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Aims & Objectives

● Aims

● This module aims to strengthen and extend students’ mathematical skills, to enable 
students to appreciate the use of mathematics as an engineering tool and to build up 
a students’ level of competence in applying mathematical methods to solve 
engineering problems.

● Learning outcomes

● On successful completion of this module a student will be able to:

● 1 Demonstrate an understanding of relevant mathematical concepts;

● 2 Carry out relevant mathematical calculations by hand and with the use of software 
tools;

● 3 Apply mathematical and numerical techniques to the solution of engineering 
problems.



  

Indicative content

● • Revision of basic mathematical manipulation

● • Functions and graphs relevant to engineering – including exponential, hyperbolic and 
trigonometric functions

● • Complex numbers – their representation, manipulation and use in engineering

● • Review of differentiation, ordinary and partial and the solution of extreme value problems

● • Solution of 1st order differential equations by separation of variables and integrating factors

● • Solution of 2nd order differential equations with constant coefficients with appropriate 
particular integrals

● • Laplace Transforms and their uses in engineering

● • Introduction to determinants, Vectors & Arrays and matrices and the use of MATLAB

● • The use of Vector algebra and Vector calculus in engineering



  

Teaching and learning activity

● Concepts and methods will be introduced and demonstrated in lectures. Students will 
build up their understanding and competence by applying the methods they have 
been taught in tutorials. Students will be assessed at regular intervals to ensure 
steady build up of competences. Diagnostic tests will be used in the first week and at 
regular intervals to ascertain the needs of individual students. Additional tutorials will 
be provided as appropriate to cover the specific topic areas identified.

● Assessment: Final Exam

● All elements of summative assessment must be passed to pass the module.

● Nature of FORMATIVE assessment supporting student learning: weekly tutorial 
exercises, one formative coursework each term in the style of the summative 
coursework and with extensive feedback



  

Revision of basic mathematical 
manipulation

● Manipulating functions can be accomplished by remembering one simple rule. In 
order to keep the equations balanced, you must do the same thing to each side of the 
equation. Whether it is dividing by 3 or adding 7, as long as you do the same thing to 
both sides of the equation, it will remain equal, or balanced.

● RULE 1: you can add, subtract, multiply and divide by anything, as long as you do the 
same thing to both sides of the equals sign. ...

● RULE 2: to move or cancel a quantity or variable on one side of the equation, perform 
the "opposite" operation with it on both sides of the equation.

● Important note: Where it is not practical to type powers on a keyboard, the notation 
X^n means X raised to the power of n.

● Mathcast is an excellent solution to the problem of typing formulae on a keyboard.



  

Revision of basic mathematical 
manipulation

● add or subtract the same thing to both sides:

● if a = b

● then a + c = b + c

● multiply or divide both sides by the same thing:

● if a = b

● then a x c = b x c

● replace any term or expression by another equal expression:

● if a + b = c

● and b = d x e

● then a + (d x e) = c 



  

Revision of basic mathematical 
manipulation

● square or square root both sides:

● if a + b = c

● then (a + b)²  = c

● And:

● If a² = b/c then: a = √b/c

● square or square root both sides:

● y(a + x) = 1 becomes:

● ya + yx = 1 



  

Revision of basic mathematical 
manipulation

● expand out an equation :

● y(a + x) = 1 becomes:

● ya + yx = 1 

● simplify (factorise):

● ab + ac = a(b + c) 



  

Revision of basic mathematical 
manipulation

● Now use these rules to answer the following questions....

● You may want to think about some of these tips:

● When rearranging an equation, don’t be afraid to use a lot of small steps and write 
down every step.

● Sometimes it isn’t at all clear how best to proceed – just start, remembering what it is 
that you need to make the subject of the equation – and eventually you will get there. 
There can be a lot of different ways of doing it.

● Brackets are useful because you can move the whole term (ie what is inside the 
brackets) around as if it is a single item. 



  

Revision of basic mathematical 
manipulation - example

● This is a Venturimeter. It is used to measure fluid flow through pipes. A Venturimeter 
works on the principle of Bernoulli’s Equation.

● Let us consider the figure shown above. Here we can see the block diagram of a 
Venturimeter. Here we can see a small converging part, a throat and a diverging part. 



  

Revision of basic mathematical 
manipulation - example

● Here, we apply Bernoulli’s equation between the inline section and the throat section. 
The pressure difference is measured using a manometer.

P1 + (1/2 ρV1²) = P2 + (1/2ρV2²)

Where P1 is the pressure in the inline section and p2 is the pressure in the throat section, 
V1 is the velocity of the fluid passing through the inline section, and v2 and the velocity of 
the fluid passing through the throat section and ρ is the density of the liquid.

Now, from the equation of continuity, we can say:

Volumetric flow rate = V = ¼ πD²u1 = ¼ πd²u2



  

Revision of basic mathematical 
manipulation – example.

● Where V is the volumetric flow rate of the liquid, D is the diameter of the 
pipe, and d is the diameter of the throat.

● Combining the two equations, we can write:

● Where β is the ratio of diameters, d/D.

● Here, we introduce a venture coefficient (C) considering the loss due to pipe 
friction and change in the total pressure:

●  Where Δp is the pressure difference and C is the coefficient of the 
Venturimeter.



  

Functions and graphs relevant to 
engineering

● These include exponential, hyperbolic and trigonometric functions.

● Exponential finctions are special in the sense that the gradient is always equal to the 
Y value. For example, it makes sense that in a colony of breading bacteria, the rate of 
breading is always equal to the number of individuals breading at a given moment.

● Trigonometric functons relate to the projection of angles, and how they are related. 

● Hyperbolic functions are analogues of the ordinary trigonometric functions, but 
defined using the hyperbola rather than the circle. Just as the points form a circle with 
a unit radius, the points form the right half of the unit hyperbola.

● I am a long standing user of Derive – a mathematics package developed by Texas 
Instruments. I am sentinental about its usage; I recall using it as an undergraduate in 
1996! It fitted onto a single floppy disk, needed minimal computing resources (it ran 
under DOS) – and yet was exceptionally powerful.

● It is 16 bit, and requires an emulator such as DOSBOX to run on Modern personal 
computers. And I still use it today!



  

Functions and graphs relevant to 
engineering - exponential

● DOSBOX is available here:

● https://www.dosbox./download.php?main=1

● Derive is discontinued, it is available here: 

● http://dfdn.info/downloads

.

 

http://dfdn.info/downloads


  

Functions and graphs relevant to 
engineering - exponential

● This is the exponential function. It is unique in that is is its own devivative (as 
gradient is equal to the Y value.



  

Functions and graphs relevant to 
engineering - hyperbolic

● Hyperbolic functions are defined in mathematics in a way similar to 
trigonometric functions. As the name suggests, the graph of a hyperbolic 
function represents a rectangular hyperbola, and its formula can often be 
seen in the formulas of a hyperbola. They are defined using a hyperbola 
instead of a unit circle as in the case of trigonometry. Hyperbolic functions 
are analogous to trigonometric functions but are derived from a hyperbola as 
trigonometric functions are derived from a unit circle.

● Hyperbolic functions are expressed in terms of the exponential function ex. 
There are six hyperbolic functions are sinh x, cosh x, tanh x, coth x, sech x, 
csch x. We can define these hyperbolic functions and their properties, 
graphs, identities, derivatives, etc. along with some solved examples.



  

Functions and graphs relevant to 
engineering - hyperbolic

● The six  basic hyperbolic functions in Derive.



  

Functions and graphs relevant to 
engineering - hyperbolic

● Hyperbolic Meaning

● Hyperbolic functions are defined analogously to trigonometric functions. We 
have main six hyperbolic functions, namely sinh x, cosh x, tanh x, coth x, 
sech x, and cosech x. They can be expressed as a combination of the 
exponential function. These functions are derived using the hyperbola just 
like trigonometric functions are derived using the unit circle.

● The hyperbolic functions are defined through the algebraic expressions that 
include the exponential function (ex) and its inverse exponential functions (e-
x), where e is the Euler’s constant. Let us see all their formulae....



  

Functions and graphs relevant to 
engineering - hyperbolic

● Sinh x: This is the odd part of the exponential functions. An algebraic 
expression for hyperbolic sine function is:

● sinh x = (ex - e-x)/2

● Cosh x: This is the even part of the exponential function. Algebraic 
expression for hyperbolic cosine function is:

● cosh x = (ex + e-x)/2

● Tanh x: tanh x = sinh x/cosh x = (ex - e-x)/(ex + e-x)

● Coth x: coth x = cosh x/sinh x = (ex + e-x)/(ex - e-x)

● Sech x: sech x = 1/cosh x = 2/(ex + e-x)

● Csch x: csch x = 2/(ex - e-x)



  

Functions and graphs relevant to 
engineering - hyperbolic

● I have shown how to plot these in derive, but these are anotated for identification.



  

Functions and graphs relevant to 
engineering - hyperbolic



  

Functions and graphs relevant to 
engineering - hyperbolic

● Properties of Hyperbolic Functions

● The properties of hyperbolic functions are analogous to the properties of 
trigonometric functions. Let us go through some of the important properties 
of these functions which are used to solve various problems in mathematics.



  

Functions and graphs relevant to 
engineering - hyperbolic

● sinh (-x) = – sinh(x)

● cosh (-x) = cosh (x)

● tanh (-x) = - tanh x

● coth (-x) = - coth x

● sech (-x) = sech x

● csc (-x) = - csch x

● cosh 2x = 1 + 2 sinh2(x) = 2 cosh2x - 1

● cosh 2x = cosh2x + sinh2x

● sinh 2x = 2 sinh x cosh x

●



  

Functions and graphs relevant to 
engineering - hyperbolic

● Hyperbolic functions can also be deduced from trigonometric functions with 
complex arguments:

●

● sinh x = - i sin(ix)

● cosh x = cos(ix)

● tanh x = - i tan(ix)

● coth x = i cot(ix)

● sech x = sec(ix)



  

Functions and graphs relevant to 
engineering - hyperbolic

● Hyperbolic Trig Identities

● The hyperbolic trig identities are similar to trigonometric identities and can 
be understood better from below. Osborn's rule states that trigonometric 
identities can be converted into hyperbolic trig identities when expanded 
completely in terms of integral powers of sines and cosines, which includes 
changing sine to sinh, cosine to cosh. The sign of every term that contains a 
product of two sinh should be replaced.

● sinh x – sinh y = 2 cosh [(x+y)/2] sinh [(x-y)/2]

● sinh x + sinh y = 2 sinh [(x+y)/2] cosh[(x-y)/2]

● cosh x + cosh y = 2 cosh [(x+y)/2] cosh[(x-y)/2]

● cosh x – cosh y = 2 sinh [(x+y)/2] sinh [(x-y)/2])

● 2 sinh x cosh y = sinh (x + y) + sinh (x - y)



  

Functions and graphs relevant to 
engineering - hyperbolic

● 2 cosh x sinh y = sinh (x + y) – sinh (x – y)

● 2 sinh x sinh y = cosh (x + y) – cosh (x – y)

● 2 cosh x cosh y = cosh (x + y) + cosh (x – y)

● sinh(x ± y) = sinh x cosh y ± coshx sinh y

● cosh(x ± y) = cosh x cosh y ± sinh x sinh y

● tanh(x ± y) = (tanh x ± tanh y)/ (1± tanh x tanh y)

● coth(x ± y) = (coth x coth y ± 1)/(coth y ± coth x)

● cosh2x - sinh2x = 1

● tanh2x + sech2x = 1

● coth2x - csch2x = 1



  

Functions and graphs relevant to 
engineering - hyperbolic

● Important Notes on Hyperbolic Functions

● There are six hyperbolic functions, namely sinh x, cosh x, tanh, x, coth x, 
sech x, csch x.

● A hyperbolic function is defined for a hyperbola.

● The hyperbolic identities are analogous to trigonometric identities.

● Hyperbolic Function Integrals and Derivatives

● The derivative and integral of a hyperbolic function are similar to the 
derivative and integral of a trigonometric function. Unlike the derivative of 
trigonometric functions, we can observe the change in sign in the derivative 
of the hyperbolic secant function. The derivatives and integrals of the 
hyperbolic functions are summarised in the following table:



  

Functions and graphs relevant to 
engineering - hyperbolic

● Hyperbolic derivatives and integrals table:



  

Functions and graphs relevant to 
engineering - hyperbolic

● Inverse Hyperbolic Functions

The inverse of a hyperbolic function is called an inverse hyperbolic function. For 
example, if x = sinh y, then y = sinh-1 x is the inverse of the hyperbolic sine 
function. The inverse hyperbolic functions expressed in terms of logarithmic 
functions are shown below:

sinh-1x = ln (x + √(x² + 1))

cosh-1x = ln (x + √(x² - 1))

tanh-1x = ln [(1 + x)/(1 - x)]

coth-1x = ln [(x + 1)/(x - 1)]

sech-1x = ln [{1 + √(1 - x²)}/x]

csch-1x = ln [{1 + √(1 + x²)}/x]



  

Functions and graphs relevant to 
engineering - Trigonometric

● Sine, Cosine and Tangent:

● These are the three trigonometric functions

● Sine is defined as the projection of an angle onto the vertical

● Cosine is defined as the projection of an angle onto the horizontal

● Tangent is defined as Sine / Cosine

● Angles can be expressed in degrees (360° in a complete rotation od cycle); grads 
(400 in a complete cycle, rarely used)or....

● Science and engineering prefer the Radiun. There are 2π radiuns in a complete 
cycle.

●  Why is the radiun prefered?



  

Functions and graphs relevant to 
engineering - Trigonometric

● Derive graph of sine, cosine and tangent



  

Functions and graphs relevant to 
engineering - Trigonometric

Relationship of sine, cosine, and tangent. Note that Tangent is Sine (θ) / Cosine (θ).



  

Functions and graphs relevant to 
engineering - Trigonometric

● The trigonometric functions most widely used in modern mathematics are the sine, 
the cosine, and the tangent. Their reciprocals are respectively the cosecant, the 
secant, and the cotangent, which are less used. Each of these six trigonometric 
functions has a corresponding inverse function, and an analogue among the 
hyperbolic functions.

● They are used in angle, resultant force, signal and voltage calculations amoung 
others. Even the AC mains supply is a sinusoidal signal, as is simple harmonic 
motion.



  

Functions and graphs relevant to 
engineering - Trigonometric

These are the relationships between functions in radiuns and degrees. We engineers 
prefer the radiun. This is defined as an angle of arclength in the circumference equal to 
the radius. This is ~ 57°. Or, a wheel completing exactly 1 rotation turns through 2π 
radiuns.



  

Functions and graphs relevant to 
engineering - Trigonometric

● The mnemonic SOHCAHTOA can be used to remember the relationships.

● Sine = opposite / hypotenuse;

● Cosine = adjacent / hopotenuse;

● Tangent = opposite / adjacent.



  

Functions and graphs relevant to 
engineering - Trigonometric

● All of the trigonometric functions of the angle θ can be constructed geometrically in 
terms of a unit circle centered at O.



  

Functions and graphs relevant to 
engineering - Trigonometric

● To recap: Sine is the ratio of the opposite side over the hypotenuse, cosine 
is the ratio of the adjacent side over the hypotenuse, and tangent is the ratio 
of the opposite side over the adjacent side. The opposite side is the side 
across from the angle and the adjacent side is the side that forms the angle.

● The algebraic expressions for the most important angles are as follows...



  

Complex numbers

● Graph of y = √ X



  

Complex numbers

● What are complex numbers – and why are they used?

● INTRODUCTION

A complex number is a number comprising area land imaginary part. It can be written in 
the form a+ib, where a and b are real numbers, and i is the standard imaginary unit with 

the property i²=-1. The complex numbers contain the ordinary real numbers, but extend 
them by adding in extra numbers and correspondingly expanding the understanding of 
addition and multiplication.

● Complex numbers are used by Electrical & Electronic Engineers to define the 
Alternating Current or AC concept of Impedance, and in Fourier analysis they are 
used in the processing of radio, telephone and video signals. I first learned of their 
importance in 1995, when I was preparing for my Radio Amateurs' exam.



  

Complex numbers

● In reality the square root of a negative number cannot exist – no number, 
can ever be negative when squared. This is why, on the previous graph, Y is 
empty when X < 0.

● There are, however some situations in which it is convenient to use √-1 
algebraically. We call these complex numbers.

● Complex numbers are the numbers that are expressed in the form of a+ib 
where, a,b are real numbers and 'i' is an imaginary number called “iota”. The 
value of i = (√-1). For example, 2+3i is a complex number, where 2 is a real 
number (Re) and 3i is an imaginary number (Im).

● Mathematicians normally use i to represent √-1. In circuit calculations I use j 
due to possible confusion with the symbol for rlectric current, I.



  

Complex numbers

● Complex numbers are helpful in finding the square root of negative 
numbers. The concept of complex numbers was first referred to in the 1st 
century by a greek mathematician, Hero of Alexandria when he tried to find 
the square root of a negative number. But he merely changed the negative 
into positive and simply took the numeric root value. Further, the real identity 
of a complex number was defined in the 16th century by Italian 
mathematician Gerolamo Cardano, in the process of finding the negative 
roots of cubic and quadratic polynomial expressions.

● Complex numbers have applications in many scientific research, signal 
processing, electromagnetism, fluid dynamics, quantum mechanics, and 
vibration analysis. Here we can understand the definition, terminology, 
visualization of complex numbers, properties, and operations of complex 
numbers.



  

Complex numbers

● HISTORY OF COMPLEX NUMBERS:

● Complex numbers were first conceived and defined by the Italian mathematician 
Gerolamo Cardano, who called them “fictitious”, during his attempts to find solutions 
to cubic equations. This ultimately led to the fundamental theorem of algebra, which 
shows that with complex numbers, a solution exists to every polynomial equation of 
degree one or higher. Complex numbers thus form an algebraically closed field, 
where any polynomial equation has a root.

● The rules for addition, subtraction and multiplication of complex numbers were 
developed by the Italian mathematician Rafael Bombelli. A more abstract formalism 
for the complex numbers was further developed by the Irish mathematician William 
Rowan Hamilton.

● CONJUGATE OF A COMPLEX NUMBER: A pair of complex numbers x+iy and x-iy 
are said to be conjugate of each other.



  

Complex numbers

● A complex number is the sum of a real number and an imaginary number. A 
complex number is of the form a + ib and is usually represented by z. Here 
both a and b are real numbers. The value 'a' is called the real part which is 
denoted by Re(z), and 'b' is called the imaginary part Im(z).  Also, ib is called 
an imaginary number.

● The alphabet i is referred to as the iota and is helpful to represent the 
imaginary part of the complex number. Further the iota(i) is very helpful to 
find the square root of negative numbers. We have the value of i² = -1, and 
this is used to find the value of √-4 = √i24 = +2i  The value of i² = -1 is the 
fundamental aspect of a complex number. Let us try and understand more 
about the increasing powers of i.



  

Complex numbers

● I = √-1

● i² = -1

● i3  = i.i² = i(-1) = -i

● i4 = (i2)² = (-1)² = 1

● I4n = 1

● i4n + 1 = i

● i4n + 2 = -1

● i4n + 3 = -i



  

Complex numbers

● Graphing of Complex Numbers

● The complex number consists of a real part and an imaginary part, which 
can be considered as an ordered pair (Re(z), Im(z)) and can be represented 
as coordinates points in the euclidean plane. The euclidean plane with 
reference to complex numbers is called the complex plane or the Argand 
Plane, named after Jean-Robert Argand. The complex number z = a + ib is 
represented with the real part - a, with reference to the x-axis, and the 
imaginary part-ib, with reference to the y-axis. Let us try to understand the 
two important terms relating to the representation of complex numbers in the 
argand plane. The modulus and the argument of the complex number.



  

Complex numbers

● Modulus of the Complex Number

The distance of the complex number represented as a point in the argand plane (a, ib) is 
called the modulus of the complex number. This distance is a linear distance from the 
origin (0, 0) to the point (a, ib), and is measured as  r  = | √ a² + b² |. 

Further, this can be understood as derived from the Pythagoras theorem, where 
the modulus represents the hypotenuse, the real part is the base, and the 
imaginary part is the altitude of the right-angled triangle.

Argument of the Complex Number

The angle made by the line joining the geometric representation of the complex 
number and the origin, with the positive x-axis, in the anticlockwise direction is 
called the argument of the complex number. The argument of the complex 
number is the inverse of the tan of the imaginary part divided by the real part of 
the complex number. Argz (θ) = Tan-1 (b/a).

.



  

Complex numbers

● Polar Representation of a Complex Number

● With the modulus and argument of a complex number and the 
representation of the complex number in the argand plane, we have a new 
form of representation of the complex number, called the polar form of a 
complex number. The complex number z = a + ib, can be represented in 
polar form as z = r(Cosθ + iSinθ).

● Here r is the modulus (r = \sqrt{a^2 + n^2}\), and θ is the argument of the 
complex number(θ =  Tan-1 (b/a).

● Properties of a Complex Number:

● The following properties of complex numbers are helpful to better 
understand complex numbers and also to perform the various arithmetic 
operations on complex numbers.



  

Complex numbers

● Conjugate of a Complex Number

● The conjugate of the complex number is formed by taking the same real part of the 
complex number and changing the imaginary part of the complex number to its 
additive inverse. If the sum and product of two complex numbers are real numbers, 
then they are called conjugate complex numbers. For a complex number  z = a + ib, 
its conjugate is ¯z  = a – ib.

● The sum of the complex number and its conjugate is z + ¯z  = ( a + ib) + (a - ib) = 2a, 
and the product of these complex numbers z . ¯z  = (a + ib) × (a - ib) = a² + b².

● Reciprocal of a Complex Number

● The reciprocal of complex numbers is helpful in the process of dividing one complex 
number with another complex number. The process of division of complex numbers is 
equal to the product of one complex number with the reciprocal of another complex 
number.. The reciprocal of the complex number z = a + ib is:



  

Complex numbers

● This also shows that z ≠ z−1.

● Equality of Complex Numbers

● The equality of complex numbers is similar to the equality of real numbers. Two 

complex numbers z1= a1+ib1  and z² = a2+ib²  are said to be equal if the rel part of 
both the complex numbers are equal a1=a2,  and the imaginary parts of both the 
complex numbers are equal b1=b2. Also, the two complex numbers in the polar form 
are equal, if and only if they have the same magnitude and their argument (angle) 
differs by an integral multiple of 2π.



  

Complex numbers

● Ordering of Complex Numbers

● The ordering of complex numbers is not possible. Real numbers and other 
related number systems can be ordered, but complex numbers cannot be 
ordered. The complex numbers do not have the structure of an ordered field, 
and there is no ordering of the complex numbers that are compatible with 
addition and multiplication. Also, the non-trivial sum of squares in an ordered 
field is a number ≠ 0, but in a complex number, the non-trivial sum of 
squares is equal to i2 + 1² = 0. The complex numbers can be measured and 
represented in a two-dimensional argrand plane by their magnitude, which is 
its distance from the origin.



  

Complex numbers

● Euler's Formula: As per Euler's formula for any real value θ we have eiθ = 
Cosθ + iSinθ, and it represents the complex number in the coordinate plane 
where Cosθ is the real part and is represented with respect to the x-axis, 
Sinθ is the imaginary part that is represented with respect to the y-axis, θ is 
the angle made with respect to the x-axis and the imaginary line, which is 
connecting the origin and the complex number. As per Euler's formula and 
for the functional representation of x and y we have ex + iy = ex(cos y + i sin 
y) = e^x cos y + ie^x Sin y. This decomposes the exponential function into its 
real and imaginary parts.

● Note: due to the limitations of a keyboard, n^x means n to the power of x.



  

Complex numbers

● Addition of Complex Numbers

● Th addition of complex numbers is similar to the addition of natural numbers. 
Here in complex numbers, the real part is added to the real part and the 
imaginary part is added to the imaginary part. For two complex numbers of 
the form z1=a+id  and z2=c+id, the sum of complex numbers 

● z1+z2=(a+c)+i(b+d).  The complex numbers follow all the following properties 
of addition.



  

Complex numbers

● Subtraction of Complex Numbers

● The subtraction of complex numbers follows a similar process of subtraction 
of natural numbers. Here for any two complex numbers, the subtraction is 
separately performed across the real part and then the subtraction is 
performed across the imaginary part. For the complex numbers: 

● z1 = a + ib, z²=c+id, we have z1−z² = (a - c) + i(b – d).

● Multiplication of Complex Numbers

● The multiplication of complex numbers is slightly different from the 
multiplication of natural numbers. Here we need to use the formula of 

● i²=−1.  For the two complex numbers z1 = a + ib, z² = c + id, the product is 

● z1.

● z2 = (ca - bd) + i(ad + bc).   



  

Complex numbers

● The multiplication of complex numbers is polar form is slightly different from 
the above mentioned form of multiplication. Here the absolute values of the 
two complex numbers are multiplied and their arguments are added to 
obtain the product of the complex numbers. For the complex numbers 

● z1=r1(Cos θ1 + iSin θ1) , and z2 = z²=r1(Cos θ2+iSinθ2), the product of the 
complex numbers is z1. z2=r1.r2(Cos(θ1+θ2)+iSin(θ1+θ2)).



  

Complex numbers

● Division of Complex Numbers

● The division of complex numbers makes use of the formula of reciprocal of a 
complex number. For the two complex numbers 

● z1 = a + ib, z2 = c + id, we have the division as 
z1z2=(a+ib)×1(c+id)=(a+ib)×(c−id)(c2+d2).



  

Complex numbers

● Complex Numbers Tips and Tricks:

● All real numbers are complex numbers but all complex numbers don't need 
to be real numbers.

● All imaginary numbers are complex numbers but all complex numbers don't 
need to be imaginary numbers.

● The conjugate of a complex number z=a+ib is ¯¯¯z=a−ib.

● The magnitude of a complex number z=a+ib is |z|=√a2+b2.



  

Complex numbers

● To recap:

● What Are Real and Complex Numbers?

● Complex numbers are a part of real numbers. Certain real numbers with a 
negative sign are difficult to compute and we represent the negative sign 
with an iota 'i', and this representation of numbers along with 'i' is called a 
complex number. Further complex numbers are useful to find the square 
root of a negative number, and also to find the negative roots of a quadratic 
or polynomial expression.
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● PROPERTIES OF COMPLEX NUMBERS ARE:

If x1+ iy1 = x² + iy2 then x1- iy1 = x² – iy2

Two complex numbers x1+ iy1 and x² + iy² are said to be equal

               If R (x1 + iy1) = R (x² + iy²)

               I (x1 + iy1) = I (x² + iy²)

● Sum of the two complex numbers is

               (x1 + iy1) + (x² + iy²) = (x1+ x² + i(y1+ y2)

● Difference of two complex numbers is

               (x1 + iy1) – (x² + iy²) = (x1-x²) + i(y1 – y2)
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● Product of two complex numbers is

               (x1+ iy1) ( x² + iy²) = x1x – y1y2 + i(y1x2 + y2 x1)

● Division of two complex numbers is

               (x1 + iy1) (x² + iy²) = x1x2 + y1 y²)x22+y22 + iy1x2  y2 x1x22+y22

● Every complex number can be expressed in terms of r (cosθ + i sinθ)

●                R (x+ iy) = r cosθ

●                I (x+ iy) = r sinθ

               r = x² +y2 and θ = tan-1yx
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● REPRESENTATION OF COMPLEX NUMBERS IN A PLANE

● The set of complex numbers is two-dimensional, and a coordinate plane is required 
to illustrate them graphically. This is in contrast to the real numbers, which are one-
dimensional, and can be illustrated by a simple number line. The rectangular complex 
number plane is constructed by arranging the real numbers along the horizontal axis, 
and the imaginary numbers along the vertical axis. Each point in this plane can be 
assigned to a unique complex number, and each complex number can be assigned 
to a unique point in the plane.

● Modulus and Argument of a complex number:

● The number r = x²+y² is called modulus of x+ iy and is written by mod (x+ iy) or x+iy

● θ = tan-1yx is called amplitude or argument of x + iy and is written by amp (x + iy) or 
arg (x + iy)
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● Application of imaginary numbers:

● For most human tasks, real numbers (or even rational numbers) offer an adequate 
description of data. Fractions such as 2/3 and 1/8 are meaningless to a person 
counting stones, but essential to a person comparing the sizes of different collections 
of stones. Negative numbers such as -3 and -5 are meaningless when measuring the 
mass of an object, but essential when keeping track of monetary debits and credits. 
Similarly, imaginary numbers have essential concrete applications in a variety of 
sciences and related areas such as signal processing, control theory, 
electromagnetism, quantum mechanics, cartography, vibration analysis, and many 
others.
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● APPLICATION OF COMPLEX NUMBER IN ENGINEERING:

● Control Theory:

● In control theory, systems are often transformed from the time domain using the 
Laplace transform. The system’s poles and zeros are then analysed in the complex 
plane. The root locus, Nyquist plot, and Nichols plot techniques all make use of the 
complex plane.

● In the root locus method, it is especially important whether the poles and zeros are in 
the left or right half planes, i.e. have real part greater than or less than zero. If a 
system has poles that are...

● in the right half plane, it will be unstable,

● all in the left half plane, it will be stable,

● on the imaginary axis, it will have marginal stability.

● If a system has zeros in the right half plane, it is an on minimum phase system.
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● Signal analysis

● Complex numbers are used insignal analysis and other fields for a convenient 
description for periodically varying signals. For given real functions representing 
actual physical quantities, often in terms of sines and cosines, corresponding 
complex functions are considered of which the real parts are the original quantities. 
For a sine wave of a given frequency, the absolute value |z| of the corresponding z is 
the amplitude and the argument arg (z) the phase.

● If Fourier analysisis employed to write a given real-valued signal as a sum of periodic 
functions, these periodic functions are often written as complex valued functions of 
the form

● ω f (t) = z

● where ω represents the angular frequency and the complex number z encodes the 
phase and amplitude as explained above.
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● Improper integrals

● In applied fields, complex numbers are often used to compute certain real-valued 
improper integrals, by means of complex-valued functions. Several methods exist to 
do this; see methods of contour integration.

● Residue theorem

● The residue theorem in complex analysisis a powerful tool to evaluate path integrals 
of meromorphic functions over closed curves and can often be used to compute real 
integrals as well. It generalizes the Cauchy and Cauchy’s integral formula.

● The statement is as follows. Suppose U is a simply connected open subset of the 
complex plane C, a1,…, an are finitely many points of U and f is a function which is 
defined and holomorphic on U{a1,…,an}. If γ is a rectifiable curve in which doesn’t 
meet any of the points ak and whose start point equals its endpoint, then Here, 
Res(f,ak) denotes the residue off at ak, and n(γ,ak) is the winding number of the 
curve γ about the point ak.
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● This winding number is an integer which intuitively measures how often the curve γ 
winds around the point ak; it is positive if γ moves in a counter clockwise 
(“mathematically positive”) manner around ak and 0 if γ doesn’t move around ak at 
all.

● In order to evaluate real integrals, the residue theorem is used in the following 
manner: the integrand is extended to the complex plane and its residues are 
computed (which is usually easy), and a part of the real axis is extended to a closed 
curve by attaching a half-circle in the upper or lower half-plane. The integral over this 
curve can then be computed using the residue theorem. Often, the half-circle part of 
the integral will tend towards zero if it is large enough, leaving only the real-axis part 
of the integral, the one we were originally interested.
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● Applications of Complex Numbers in Quantum mechanics

● The complex number field is relevant in the mathematical formulation of quantum 
mechanics, where complex Hilbert spaces provide the context for one such 
formulation that is convenient and perhaps most standard. The original foundation 
formulas of quantum mechanics – the Schrödinger equation and Heisenberg’s matrix 
mechanics – make use of complex numbers.

● The quantum theory provides a quantitative explanation for two types of phenomena 
that classical mechanics and classical electrodynamics cannot account for:

● Some observable physical quantities, such as the total energy of a black body, take 
on discrete rather than continuous values. This phenomenon is called quantization, 
and the smallest possible intervals between the discrete values are called quanta 
(singular:quantum, from the Latin word for “quantity”, hence the name “quantum 
mechanics.”) The size of the quanta typically varies from system to system.
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● Under certain experimental conditions, microscopic objects like atoms or electrons 
exhibit wave-like behavior, such as interference. Under other conditions, the same 
species of objects exhibit particle-like behavior (“particle” meaning an object that can 
be localized to a particular region ofspace), such as scattering. This phenomenon is 
known as wave-particle duality.
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● Application of complex numbers in Computer Science:

● Arithmetic and Logic in Computer Systems provides a useful guide to a fundamental 
subject of computer science and engineering. Algorithms for performing operations 
like addition, subtraction, multiplication, and division in digital computer systems are 
presented, with the goal of explaining the concepts behind the algorithms, rather than 
addressing any direct applications. Alternative methods are examined, and 
explanations are supplied of the fundamental materials and reasoning behind 
theories and examples.

● This technological manual explores how software engineering principles can be used 
in tandem with software development tools to produce economical and reliable 
software that is faster and more accurate. Tools and techniques provided include the 
Unified Process for GIS application development, service-based approaches to 
business and information technology alignment, and an integrated model of 
application and software security. Current methods and future possibilities for 
software design are covered.
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● Application of complex numbers in Electrical Engineering:

● The voltage produced by a battery is characterized by one real number (called 
potential), such as +12 volts or -12 volts. But the “AC” voltage in a home requires two 
parameters. One is a potential, such as 120 volts, and the other is an angle (called 
phase). The voltage is said to have two dimensions. A 2-dimensional quantity can be 
represented mathematically as either a vector or as a complex number (known in the 
engineering context as phasor). In the vector representation, the rectangular 
coordinates are typically referred to simply as X and Y. But in the complex number 
representation, the same components are referred to as real and imaginary. When 
the complex number is purely imaginary, such as a real part of 0 and an imaginary 
part of 120, it means the voltage has a potential of 120 volts and a phase of 90°, 
which is physically very real.
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● Application of complex numbers in electronic engineering

● Information that expresses a single dimension, such as linear distance, is called a 
scalar quantity in mathematics. Scalar numbers are the kind of numbers students use 
most often. In relation to science, the voltage produced by a battery, the resistance of 
a piece of wire (ohms), and current through a wire (amps) are scalar quantities.

● When electrical engineers analysed alternating current circuits, they found that 
quantities of voltage, current and resistance (called impedance in AC) were not the 
familiar one-dimensional scalar quantities that are used when measuring DC circuits. 
These quantities which now alternate in direction and amplitude possess other 
dimensions (frequency and phase shift) that must be taken into account.

● In order to analyse AC circuits, it became necessary to represent multi-dimensional 
quantities. In order to accomplish this task, scalar numbers were abandoned 
andcomplex numberswere used to express the two dimensions of frequency and 
phase shift at one time.
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● In mathematics, i is used to represent imaginary numbers. In the study of electricity 
and electronics, j is used to represent imaginary numbers so that there is no 
confusion with i, which in electronics represents current. It is also customary for 
scientists to write the complex number in the form a+jb.

● In electrical engineering, the Fourier transform is used to analyze varying voltages 
and currents. The treatment of resistors, capacitors, and inductors can then be 
unified by introducing imaginary, frequency-dependent resistances for the latter two 
and combining all three in a single complex number called the impedance. (Electrical 
engineers and some physicists use the letter j for the imaginary unit since i is typically 
reserved for varying currents and may come into conflict with i.) This approach is 
called phasor calculus. This use is also extended into digital signal processing and 
digital image processing, which utilize digital versions of Fourier analysis (and 
wavelet analysis) to transmit, compress, restore, and otherwise process digital audio 
signals, still images, andvideosignals.
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● Introducing the formula E = IZ where E is voltage, I is current, and Z is impedance.

● Complex numbers are used a great deal in electronics. The main reason for this is 
they make the whole topic of analyzing and understanding alternating signals much 
easier. This seems odd at first, as the concept of using a mix of real and ‘imaginary’ 
numbers to explain things in the real world seem crazy!. To help you get a clear 
picture of how they’re used and what they mean we can look at a mechanical 
example…

● We can now reverse the above argument when considering a.c. (sine wave) 
oscillations in electronic circuits. Here we can regard the oscillating voltages and 
currents as ‘side views’ of something which is actually ‘rotating’ at a steady rate. We 
can only see the ‘real’ part of this, of course, so we have to ‘imagine’ the changes in 
the other direction. This leads us to the idea that what the oscillation voltage or 
current that we see is just the ‘real’ portion’ of a ‘complex’ quantity that also has an 
‘imaginary’ part. At any instant what we see is determined by aphase angle which 
varies smoothly with time.
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● We can now consider oscillating currents and voltages as being complex values that 
have a real part we can measure and an imaginary part which we can’t. At first it 
seems pointless to create something we can’t see or measure, but it turns out to be 
useful in a number of ways.
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● Applications in Fluid Dynamics:

● Influid dynamics, complex functions are used to describe potential flow in two 
dimensions. Fractals.

● Certain fractals are plotted in the complex plane, e.g. the Mandelbrot set

● Fluid Dynamics and its sub disciplines aerodynamics, hydrodynamics, and hydraulics 
have a wide range of applications. For example, they are used in calculating forces 
and moments onaircraft, the mass flow of petroleum through pipelines, and prediction 
of weather patterns.

● The concept of a fluid is surprisingly general. For example, some of the basic 
mathematical concepts in traffic engineering are derived from considering traffic as a 
continuous fluids.
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● Application of complex numbers in Relativity

● In special and general relativity, some formulas for the metric on space time become 
simpler if one takes the time variable to be imaginary. (This is no longer standard in 
classical relativity, but isused in an essential way in quantum field theory.) Complex 
numbers are essential to spinors, which are a generalization of the tensors used in 
relativity.

● Application of complex numbers in Applied mathematics:

● In differential equations, it is common to first find all complex roots r of the 
characteristic equation of a linear differential equation and then attempt to solve the 
system in terms of base functions of the form f(t) = ert.

● Application of complex numbers in Electromagnetism:

● Instead of taking electrical and magnetic part as a two different real numbers, we can 
represent it as in one complex number



  

Complex numbers

● Application of complex numbers in Civil and Mechanical Engineering:

● The concept of complex geometry and Argand plane is very much useful in 
constructing buildings and cars. This concept is used in 2-D designing of buildings 
and cars. It is also very useful in cutting of tools. Another possibility to use complex 
numbers in simple mechanics might be to use them to represent rotations.
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● What is Differentiation?

● Differentiation is all about finding rates of change of one quantity compared 
to another. We need differentiation when the rate of change is not constant.

● What does this mean? It is easy to find the gradient of a linear function or it's 
graph. But what aabout non-linear finctions?

● Rate of Change that is Not Constant:  Imagine wethrow a ball straight up in 
the air. Because gravity acts on the ball it slows down, then it reverses 
direction and starts to fall. All the time during this motion the velocity is 
changing. It goes from positive (when the ball is going up), slows down to 
zero, then becomes negative (as the ball is coming down). During the "up" 
phase, the ball has negative acceleration and as it falls, the acceleration is 
positive. 

● Now let's look at the graph of height (in metres) against time (in seconds)...
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● Notice this time that the slope of the graph is changing throughout the 
motion. At the beginning, it has a steep positive slope (indicating the large 
velocity we give it when we throw it). Then, as it slows, the slope get less 
and less until it becomes 0.

● 0 (when the ball is at the highest point and the velocity is zero). Then the ball 
starts to fall and the slope becomes negative (corresponding to the negative 
velocity) and the slope becomes steeper (as the velocity increases in a 
negative sense).



  

Differentiation

● Important Concept - Approximations of the Slope:

● Now, let's zoom in on the section of the graph near = 1 t=1 (where I have the 
green rectangle in the graph above). We look at the bit between t = 0.9 s 
and t = 1.1 s. It looks like this:
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● Notice that if we zoom in close enough to a curve, it begins to look like a 
straight line. We can find a very good approximation to the slope of the curve 
at the point t=1 (it will be the slope of the tangent to the curve, marked in 
pink) by observing the points that the curve passes through near t=1. (A 
tangent is a line that touches the curve at one point only.)

● Observing the graph, we see that it passes through (0.9,36.2)(0.9,36.2) and 

● (1.1,42). So the slope of the tangent at  t=1 is about: (y2 −y1) / (x2=x1).

● Clearly, if we were to zoom in closer, our curve would look even more 
straight and we could get an even better approximation for the slope of the 
curve.

● This idea of "zooming in" on the graph and getting closer and closer to get a 
better approximation for the slope of the curve (thus giving us the rate of 
change) was the breakthrough that led to the development of differentiation.



  

Differentiation

● Development of Differential Calculus

● Up until the time of Newton and Leibniz, there was no reliable way to 
describe or predict this constantly changing velocity. There was a real need 
to understand how constantly varying quantities could be analysed and 
predicted. That's why they developed differential calculus.

● Why Study Differentiation?

● There are many applications of differentiation in science and engineering. 
You can see some of these in Applications of Differentiation.

● Differentiation is also used in analysis of finance and economics.

● One important application of differentiation is in the area of optimisation, 
which means finding the condition for a maximum (or minimum) to occur. 
This is important in business (cost reduction, profit increase) and 
engineering (maximum strength, minimum cost.)
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● Optimisation Example

● A box with a square base is open at the top. If 64 cm2 of material is used, 
what is the maximum volume possible for the box?

● The volume of the box is V = x2y. We are told that the surface area of the 
box is 64 cm2. The area of the base of the box is x2 and the area of each 
side is xy, so the area of the base plus the area of the 4 sides is given by:

● x² + 4xy = 64 cm². Solving for y gives:

Y = 64−x² / 4x = 16/x – x/4. 

So the volume can be rewritten: V =x² y = x²(16/x – x/4) = 16x – 3x³ /4.

= 16x – x³/4. This = 0 when:  x= ± 8/√3 ~ 4.62. (Note: The negative case has no 
practical meaning.)
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● Is it a maximum? D² V/dx² = -3x/2.

● and this is negative when x is positive. So it is a MAX. 

● So the dimensions of the box are: Base 4.62 cm × 4.62 cm and sides 2.31 cm.

● The maximum possible volume is V = 4.62 × 4.62 × 2.31 ≈ 49.3 cm3

● Check: Area of material:

x² + 4xy = 21.3 + 4 × 4.62 × 2.31 = 64 (which works out well).
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Sin(X) Cos(X) 2 sin(X) 2 cos (X)

Cos(X) -Sin(X) 2 cos(X) -2 sin(x)

Tan(X) Sec²(X) 2 tan(X) 2sec²(X)

e² e² 2LN(X) 2/X

LN(X) 1/X X 1

X² 2X DY/Dx General case

X^n n^x^n-1 Y = a (where a
 is a constant)

0

X³ 3X²

KX^n KXn^n-1

3X^4 12X^3
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● Power Rule for Derivatives: Integer Exponents

● If n is a positive integer, the power rule says that the derivative of x^n is 
n^x^(n-1) for all x, whether you are thinking of derivatives at a point 
(numbers) or derivatives on an interval (functions). This can be derived 
using the binomial theorem or product rule. Similarly, if n is zero or a 
negative integer, the power rule says that the derivative of x^n is n^x^(n-1) 
for all nonzero x.

● The Exponential Function

● Recall that the exponential function f(x)=ex. The derivative of this function is 
the same as the function itself. This is the only function which diferentiates to 
itself – as the gradient is equal to the Y value.

● For LN(X) – the natural logarythm – the derivative is 1/X.
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● Product rule:

● Two variables multiplied

● Derivative is the first multiplied by yhe derivative of the second;

● Plus the second multiplied by the derivative of the first.

● In other words, the product rule allows us to find the derivative of two 
differentiable functions that are being multiplied together by combining our 
knowledge of both the power rule and the sum and difference rule for 
derivatives.
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● The Chain Rule

● This rule is used to differentiate a function of another function, y=f(g(x)).

● To differentiate  y=f(g(x)), let u=g(x) so that we have y as a function of u, y

● = f(u). Then the chain rule says:

● Once you have worked this out, you replace u by g(x) and your answer is 
now in terms of x.

● The Power Rule

● To differentiate any function of the form: y=axn where a  and n  
areconstants, we take the power n, bring it in front of the function, and then 
reduce the power by 1.
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● To differentiate a sum (or difference) of terms, differentiate each term 
separately and add (or subtract) the derivatives.

● The sum rule for derivatives states that the derivative of a sum is equal to 
the sum of the derivatives.

● In symbols, this means that for f(x)=g(x)+h(x).

● The Difference rule says the derivative of a difference of functions is the 
difference of their derivatives. The Constant multiple rule says the derivative 
of a constant multiplied by a function is the constant multiplied by the 
derivative of the function.

● For the difference rule: simply subtract the derivatives.
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● Quotient Rule

● We use the quotient rule to differentiate a function y = u / v

●  which is a quotient of two functions of  x ,  u  and  v. The quotient rule says 
the derivative of y  is:

● Where:

● the derivative of a quotient is “the derivative of the numerator times the 
denominator, minus the numerator times the derivative of the denominator, 
all divided by the denominator squared”.
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● integral area

● Integration can be used to find areas, volumes, central points and many 
useful things. It is often used to find the area underneath the graph of a 
function and the x-axis.

● The first rule to know is that integrals and derivatives are opposites!

● Differentiation finds the rate of change. The difference in the value of Y, 
divied by the difference in the value of X.

● Integration tries to guess what was diferentiated! But there is one 
uncertainty; if a constant value was added to (or subtracted from) the 
origional function, it cannot be recovered – as constants differentiate to 0, 
they will not have an effect on the gradiant.
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● Remember – integration and differentiation reverse each other's function. Like + and 
-, X and /, square and square root, for example.

● The constant C can be ± or 0.

● Any constants differentiated to 0 if present.
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Constant ∫a dx ax + C

Variable ∫x dx x2/2 + C

Square ∫x2 dx x³/3 + C

Reciprocal ∫(1/x) dx ln|x| + C

Exponential ∫ex dx ex + C

Trigonometry (x in radians!) ∫cos(x) dx sin(x) + C

∫sin(x) dx -cos(x) + C

∫sec2(x) dx tan(x) + C

Multiplication by constant ∫cf(x) dx c∫f(x) dx

Power Rule (n≠−1) ∫x^n dx Xn+1/ n+1  + C

Sum Rule ∫(f + g) dx ∫f dx + ∫g dx

Difference Rule ∫(f - g) dx ∫f dx - ∫g dx

Integration by Parts See Integration by Parts

Substitution Rule See Integration by Substitution
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● Have you ever wondered how engineers develop designs to cope with extreme 
events which may happen decades or even centuries apart?

● For example, one of the difficulties a weather forcaster faces is that the events which 
the public want to know about most are those which affact their livlihoods, or even 
perhaps their lives. 

● As a rule, the more extreme the event, the less likely it is to be predicted with 
accuracy and/or at long range. One example would include the freak storm which hit 
Southern and Eastern England on the night of October 16/17th, 1987 – which I 
experienced in person and remember well (as does the British weather forecaster, 
Micheal Fish, whose forcast, as bad luck would have it, began with the fateful words, 
'Earlier this morning, an old lady rang the weather centre saying there was a huricane 
on the way. Don't worry, there isnt'....'

● And next morning, people woke to a scene of devestation and fatalities.
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● Extreme value theory or extreme value analysis (EVA) is a branch of statistics 
dealing with the extreme deviations from the median of probability distributions. It 
seeks to assess, from a given ordered sample of a given random variable, the 
probability of events that are more extreme than any previously observed. Extreme 
value analysis is widely used in many disciplines, such as structural engineering, 
finance, economics, earth sciences, traffic prediction, and geological engineering. For 
example, EVA might be used in the field of hydrology to estimate the probability of an 
unusually large flooding event, such as the 100-year flood. Similarly, for the design of 
a breakwater, a coastal engineer would seek to estimate the 50-year wave and 
design the structure accordingly.
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● Applications of extreme value theory include predicting the probability distribution of:

● Extreme floods; the size of freak waves

● Tornado outbreaks

● Maximum sizes of ecological populations

● Side effects of drugs (e.g., ximelagatran)

● The magnitudes of large insurance losses

● Equity risks; day-to-day market risk

● Mutational events during evolution

● Large wildfires;
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● Environmental loads on structures

● Fastest time humans are capable of running the 100 metres sprint and performances 
in other athletic disciplines;

● Pipeline failures due to pitting corrosion

● Anomalous IT network traffic, prevent attackers from reaching important data

● Road safety analysis;

● Wireless communications;

● Epidemics such as the recent Covid-19 epidemic;

● Neurobiology.
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● Extreme Value Meaning

● Extreme values of a function f(x) are the values y = f(x) which a function attains for a 
specific input x such that no other value of f(x) in the range is greater or less than 
these values. We have two types of extreme values: maximum and minimum. The 
maximum value of a function is a value such that no other value of the function can 
be greater than this and the minimum value of a function is a value such that no other 
value of the function is less than this value.

● Extreme Value Theorem Statement:

● The extreme value theorem states that 'If a real-valued function f is continuous on a 
closed interval [a, b] (with a < b), then there exist two real numbers c and d in [a, b] 
such that f(c) is the minimum and f(d) is the maximum value of f(x). Mathematically, 
we can write the formula for the extreme value theorem as, f(c) ≤ f(x) ≤ f(d),  x  [a, ∀ ∈
b].

● The extreme value theorem can also be stated as 'If a real-valued function f is 
continuous on [a, b], then f attains its maximum and minimum of [a, b].
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● Graphical Representation of Extreme Value Theorem...
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● Example: Continuous function on a closed interval

● Example Suppose a farmer wishes to enclose a rectangular field using 1000 yards of

fencing in such a way that the area of the field is maximized. Let x and y be the 
dimensions of the field and let A be the area of the field. Then: A = xy. Moreover, 1000 = 
2x + 2y, so y = 500 − x.

Hence A = x(500 − x) = 500x − x².

We want to find the maximum value of A on the interval [0, 500]. Now, 

DA/dx = 500 − x, Hence:

A = x(500 − x) = 500x − x².

We want to find the maximum value of A on the interval [0, 500]. Now, 

DA / dx = 500 − 2x, so dA / dx = 0, when x = 250.
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● Evaluating, we have:

● Aǀ x=0 = 0,

● Aǀ x=250 = (250)(250) = 62, 500,

● Aǀ x=500 = 0.

● So A has a maximum value of 62,500 square yards when x = 250 yards and y = 
500−250 = 250 yards.
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● What is Extreme Value Theorem Formula? Mathematically, we can write the formula 
for the extreme value theorem as:

● f(c) ≤ f(x) ≤ f(d),  x  [a, b], where f is a continuous function on closed interval [a, b] ∀ ∈
and c, d lie in [a, b].
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● Example:

Consider function f(x) = x³ - 27x + 2. Find the maximum and minimum values of f(x) on [0, 
4] using the extreme value theorem.

Solution: Since f(x) = x³ - 27x + 2 is differentiable, therefore it is continuous. Since [0, 4] is 
closed and bounded, therefore we can apply the extreme value theorem. Differentiate f(x) 
= x³ - 27x + 2.

f'(x) = 3x2 - 27

Setting f'(x) = 0, we have 3x² - 27 = 0  3x⇒ ² = 27.

 ⇒ x² = 27/3 = 9 

 ⇒ x = -3, 3

So, x = -3, 3 are the critical points. Now, we find the value of f(x) at critical points and the 
endpoints of the interval......



  

Extreme value Problems

F(-3) = (-3)³ - 27(-3) + 2 = -27 + 81 + 2 = 56

F(3) = (3)³ - 27(3) + 2 = 27 - 81 + 2 = -52

F(0) = (0)³ - 27(0) + 2 = 2

F(4) = (4)³ - 27(4) + 2 = -42

● So the minimum value of f(x) on [0, 4] is -52 and its maximum value on [0, 4] 
is 56.



  

Extreme value Problems

● Important Notes on Extreme Value Theorem:

● The extreme value theorem can also be stated as 'If a real-valued function f 
is continuous on [a, b], then f attains its maximum and minimum of [a, b].

● We can find the maximum and minimum values of a function by finding the 
critical points of the function using its derivative.

● The extreme value theorem can be proved using the contradiction and 
boundedness theorem.



  

Differential equations

● In mathematics, a differential equation is an equation that relates one or 
more unknown functions and their derivatives. In applications, the functions 
generally represent physical quantities, the derivatives represent their rates 
of change, and the differential equation defines a relationship between the 
two.

● In our world things change, and describing how they change often ends up 
as a Differential Equation: an equation with a function and one or more of its 
derivatives.

● So, a Differential Equation is an equation with a function and one or more of 
its derivatives.



  

Differential equations

● Solving:

● We solve it when we discover the function y (or set of functions y).

● There are many "tricks" to solving Differential Equations (if they can be 
solved!).

● But first: Why Are Differential Equations Useful?

● Let us imagine we have a popultion of rabbits (small mammals native to 
Europe).

● The more rabbits we have the more baby rabbits we get. Then those rabbits 
grow up and have babies too! The population will grow faster and faster 
(unless a controlling factor such as predation, food limitations or disease 
cause an equilibrium to be established, as happens in the wild).



  

Differential equations

● The important parts of this are:

● the population N at any time t; the growth rate r; the population's rate of change  dN / 
dt.

●  Think of dN / dt   as "how much the population changes as time changes, for any 
moment in time".

● Let us imagine the growth rate r is 0.01 new rabbits per week for every current rabbit.

● When the population is 1000, the rate of change  DN / dt   is then 1000×0.01 = 10 
new rabbits per week.

● But that is only true at a specific time, and doesn't include that the population is 
constantly increasing. The bigger the population, the more new rabbits we get! When 
the population is 2000 we get 2000×0.01 = 20 new rabbits per week, etc. So it is 
better to say the rate of change (at any instant) is the growth rate times the 
population at that instant:



  

Differential equations

● DN / dt   = rN

● And that is a Differential Equation, because it has a function N(t) and its 
derivative. And how powerful mathematics is! That short equation says "the 
rate of change of the population over time equals the growth rate times the 
population".

● On its own, a Differential Equation is a wonderful way to express something, 
but is hard to use.

● So we try to solve them by turning the Differential Equation into a simpler 
equation without the differential bits, so we can do calculations, make 
graphs, predict the future, and so on.



  

Differential equations

● Example: Compound Interest

● Money earns interest. The interest can be calculated at fixed times, such as yearly, 
monthly, etc. and added to the original amount. This is why saving is a good idea (nd 
borrowing a bad one!).

● This is called compound interest.

● But when it is compounded continuously then at any time the interest gets added in 
proportion to the current value of the loan (or investment).

● And as the loan grows it earns more interest.

● Using t for time, r for the interest rate and V for the current value of the loan:

● DV / dt   = rV

● And here is a cool thing: it is the same as the equation we got with the Rabbits! It just 
has different letters. So mathematics shows us these two things behave the same.



  

Differential equations

● Solving: The Differential Equation says it well, but is hard to use.

● But don't worry, it can be solved (using a special method called Separation 
of Variables) and results in: V = Pe^rt

● Where P is the Principal (the original loan), and e is Euler's Number. 

● The number e is one of the most important numbers in mathematics.

● The first few digits are: 2.7182818284590452353602874713527............

● It goes to an infinite number of decimal places. It is an irational number 
(cannot be represented as p/q where p and q are integers.

● Use alt + e to obtain it, hereafter known as e. So the exponential exponent is 
e (we saw an exponential graph in Derive) and LN (the natural logarithm) is 
LOG base e. Useful to know.



  

Differential equations

● Remember:

● It is often called Euler's number after Leonhard Euler (pronounced "Oiler").

● e is an irrational number (it cannot be written as a simple fraction).

● e is the base of the Natural Logarithms (invented by John Napier).

● e is found in many interesting areas, so is worth learning about.

● Calculating

● There are many ways of calculating the value of e, but none of them ever 
give a totally exact answer, because e is irrational and its digits go on 
forever without repeating. But it is known to over 1 trillion digits of accuracy!

● For example, the value of (1 + 1/n)n approaches e as n gets bigger and 
bigger.



  

Differential equations

● So a continuously compounded loan of $1,000 for 2 years at an interest rate 
of 10% becomes:

● V =1000 × e^(2×0.1)

● V =1000 × 1.22140...

● V =$1,221.40 (to the nearest cent).



  

Differential equations

● Example: The Verhulst Equation

● Remember our rabbits? Remember our growth Differential Equation: 

● dN / dt   = rN

● Well, that growth can't go on forever as they will soon run out of available 
food. So let's improve it by including: the maximum population that the food 
can support k. A guy called Verhulst figured it all out and got this Differential 
Equation: dN / dt   = rN(1−N/k). Since known as The Verhulst Equation.



  

Differential equations

● Simple Harmonic Motion

● In Physics, Simple Harmonic Motion is a type of periodic motion where the restoring 
force is directly proportional to the displacement. An example of this is given by a 
mass on a spring.

● Example: Spring and Weight:

● A spring gets a weight attached to it:

● the weight gets pulled down due to gravity,

● as the spring stretches its tension increases,

● the weight slows down,

● then the spring's tension pulls it back up,

● then it falls back down, up and down, again and again.

● So to describe this with mathematics....



  

Differential equations

● The weight is pulled down by gravity, and we know from Newton's Second 
Law that force equals mass times acceleration:

● F = ma

● And acceleration is the second derivative of position with respect to time, so:

F = m  (d²x / dt²).

The spring pulls it back up based on how stretched it is (k is the spring's stiffness, and x is 
how stretched it is): F = -kx

The two forces are always equal: m (d²x / dt²)  = −kx

Warning! Note: we haven't included "damping" (the slowing down of the oscillation due to 
friction). 

Note that in the electrical world, the LC oscillator is an electrical analouge of the mass 
and spring. (L = inductance, C = capacitance). See analouge electronics!



  

Differential equations

● Creating a differential equation is the first major step. But we also need to 
solve it to discover how, for example, the spring bounces up and down over 
time.

● Classify Before Trying To Solve:

● So how do we solve them?

● Over the years wise people have worked out special methods to solve some 
types of Differential Equations.

● So we need to know what type of Differential Equation it is first. So, let us 
first classify the Differential Equation.

● Ordinary or Partial

● The first major grouping is:



  

Differential equations

● "Ordinary Differential Equations" (ODEs) have a single independent variable 
(like y)

● "Partial Differential Equations" (PDEs) have two or more independent 
variables.

● Order and Degree:

● Next we work out the Order and the Degree: 

● The order us the highest derivative. For example:

(D²y/dx²)³ + dy/dx + y = 4x^5 (the ² indicates that the order is 
2 in this example, and the ³ indicates the degree is 3.



  

Differential equations

● Example 1:

● Dy / dx   + y2 = 5x has only the first derivative dy / dx  , so is "First Order"

Example: d²y / dx²   + xy = sin(x) This has a second derivative  d²y / dx², so is "Order 2" or 
second order.

Example: d³y / dx³   + x dy / dx   + y = ex This has a third derivative  d³y / dx³  which 
outranks the dy / dx , so is "Order 3".



  

Differential equations

Example: (dy / dx)² + y = 5x²

● The highest derivative is just dy/dx, and it has an exponent of 2, so this is "Second 
Degree". In fact it is a First Order Second Degree Ordinary Differential Equation.

Example: d3y / dx³  + ( dy /dx )² + y = 5x²

The highest derivative is d³y/dx³, but it has no exponent (well actually an exponent of 1 
which is not shown), so this is "First Degree".

● (The exponent of 2 on dy/dx does not count, as it is not the highest derivative).

● So it is a Third Order First Degree Ordinary Differential Equation.

● Be careful not to confuse order with degree. Some people use the word order when 
they mean degree!



  

Differential equations

● Linear

It is Linear when the variable (and its derivatives) has no exponent or other function put 
on it. So no y², y³, √y, sin(y), ln(y) etc, just plain y (or whatever the variable is). More 
formally a Linear Differential Equation is in the form:

● Dy / dx   + P(x)y = Q(x).

● Solving

● OK, we have classified our Differential Equation, the next step is solving.



  

Differential equations

● Solving:

● A Differential Equation can be a very natural way of describing something.

● Example: Population Growth

● This short equation says that a population "N" increases (at any instant) as 
the growth rate times the population at that instant: dN / dt   = rN.

● Our example is solved with this equation: N(t) = N0^(e^rt)

● What does it say? Let's use it to see: 

● With t in months, a population that starts at 1000 (N0) and a growth rate of 
10% per month (r) we get: N(1 month) = 1000e0.1x1 = 1105

● N(6 months) = 1000e0.1x6 = 1822, etc.

● There is no magic way to solve all Differential Equations!



  

Differential equations

● Separation of Variables

● Separation of Variables can be used when:

● All the y terms (including dy) can be moved to one side of the equation, and

● All the x terms (including dx) to the other side.

● If that is the case, we can then integrate and simplify to get the the solution.



  

Differential equations

● First Order Linear Differential Equations are of this type: 

● dy / dx   + P(x)y = Q(x)

● Where P(x) and Q(x) are functions of x.

They are "First Order" when there is only dy / dx  (not  d²y / dx²  or  

d³y / dx³ , etc.).

Note: a non-linear differential equation is often hard to solve, but we can sometimes 
approximate it with a linear differential equation to find an easier solution.



  

Differential equations

● Homogeneous Equations

● Homogeneous Differential Equations look like this: dy / dx  = F (y/x)

● We can solve them by using a change of variables: v = y / x

● which can then be solved using Separation of Variables .



  

Differential equations

● Bernoull Equations are of this general form: dy / dx   + P(x)y = Q(x)y^n

where n is any Real Number but not 0 or 1

● When n = 0 the equation can be solved as a First Order Linear Differential 
Equation.

● When n = 1 the equation can be solved using Separation of Variables.

● For other values of n we can solve it by substituting  u = y&(1−n) and turning 
it into a linear differential equation (and then solve that).



  

Differential equations

Second Order (homogeneous) are of the type: d²y / dx   + P(x) 

● Dy / dx   + Q(x)y = 0

Notice there is a second derivative d²y / dx² 

The general second order equation looks like this  a(x) d²y / dx²  + b(x) 

● Dy / dx  + c(x)y = Q(x)

● There are many distinctive cases among these equations. They are 
classified as homogeneous (Q(x)=0), non-homogeneous, autonomous, 
constant coefficients, undetermined coefficients etc.

● For non-homogeneous equations the general solution is the sum of: 

● the solution to the corresponding homogeneous equation, and

● the particular solution of the non-homogeneous equation.



  

Differential equations

The Undetermined Coefficients method works for a non-homogeneous equation like this: 
d²y / dx²   + P(x) dy / dx   + Q(x)y = f(x)

● where f(x) is a polynomial, exponential, sine, cosine or a linear combination 
of those. (For a more general version see Variation of Parameters below)

● This method also involves making a guess!

● Variation of Parameters is a little messier but works on a wider range of 
functions than the previous Undetermined Coefficients.



  

Differential equations

● Exact Equations and Integrating Factors

● Exact Equations and Integrating Factors can be used for a first-order 
differential equation like this:

● M(x, y)dx + N(x, y)dy = 0

● that must have some special function I(x, y) whose partial derivatives can be 
put in place of M and N like this:

● ∂I / ∂x  dx +  ∂I / ∂y  dy = 0

● Our job is to find that magical function I(x, y) if it exists.



  

Differential equations

● Ordinary Differential Equations (ODEs) vs Partial Differential Equations 
(PDEs).All of the methods so far are known as Ordinary Differential 
Equations (ODE's).

● The term ordinary is used in contrast with the term partial to indicate 
derivatives with respect to only one independent variable.

● Differential Equations with unknown multi-variable functions and their partial 
derivatives are a different type and require separate methods to solve them.

● They are called Partial Differential Equations (PDE's), and this is a little 
beyond the scope of this course.



  

Laplace Transforms

● The Laplace Transform is a widely used integral transformin mathematics 
with many applications in science and engineering. The Laplace Transform 
can be interpreted as a transformation from time domain where inputs and 
outputs are functions of time to the frequency domain where inputs and 
outputs are functions of complex angular frequency.

● Laplace Transform methods have a key role to play in the modern approach 
to the analysis and design of engineering system. The concepts of Laplace 
Transforms are applied in the area of science and technology such as 
Electric circuit analysis, Communication engineering, Control engineering 
and Nuclear physics etc.

● The definition and some useful properties of Laplace Transform which we 
have to use further for solving problems related to Laplace Transform in 
different engineering fields are listed as follows.



  

Laplace Transforms

Definition of the Laplace Transform:

Let f(t) be a function of t , then the integral  0∫∞ e^-st f(t) dt is called Laplace Transform of 
f(t). We denote it as L[f(t)] or F(s).

I.e L[f(t)] = 0∫∞ e^ -st F (t) dt = F(s).

Properties:

The properties of Laplace transform are as follows......



  

Laplace Transforms

Linearity Property

If x(t) L.TX(s)⟷
& y(t) L.TY(s)⟷
Then linearity property states that 

ax(t)+by(t) L.TaX(s)+bY(s).⟷



  

Laplace Transforms

● Time Shifting Property...

● If x(t) L.TX(s)⟷
● Then time shifting property states that.

● x(t−t0) L.Te−st0X(s).⟷
● Frequency Shifting Property

● If x(t) L.TX(s)⟷
● Then frequency shifting property states that

● es0t.x(t) L.TX(s−s0)⟷



  

Laplace Transforms

● Time Reversal Property

● If x(t) L.TX(s)⟷
● Then time reversal property states that

● x(−t) L.TX(−s)⟷
● Time Scaling Property

● If x(t) L.TX(s)⟷
● Then time scaling property states that

● x(at) L.T1|a|X(s/a)⟷



  

Laplace Transforms

● Differentiation and Integration Properties

● If x(t) L.TX(s)⟷
● Then differentiation property states that

● dx(t)dt L.Ts.X(s)−s.X(0)⟷
● dn^x(t)dtn L.T(s)^n.X(s)⟷
● The integration property states that

● ∫x(t)dt L.T1/s X(s)⟷
● ∭...∫x(t)dt L.T1/s^n X(s)⟷



  

Laplace Transforms

Multiplication and Convolution Properties

If x(t) L.TX(s)⟷
and y(t) L.TY(s)⟷
Then multiplication property states that

x(t).y(t) L.T1/2πjX(s) Y(s)⟷ ∗
The convolution property states that

x(t) y(t)∗ ↔L.TX(s).Y(s)



  

Laplace Transforms

● Region of Convergence (ROC):

● The range variation of σ for which the Laplace transform converges is called 
region of convergence.

● ROC contains strip lines parallel to jω axis in s-plane.

● If x(t) is absolutely integral and it is of finite duration, 

then ROC is entire s-plane.

● If x(t) is a right sided sequence then ROC : Re{s} > σo.

● If x(t) is a left sided sequence then ROC : Re{s} < σo.

● If x(t) is a two sided sequence then ROC is the combination of two regions.



  

Laplace Transforms

● ROC can be explained by making use of examples given below:

● Example 1: Find the Laplace transform and ROC of x(t)=e^−at u(t)

● L.T[x(t)]=L.T[e−atu(t)]=1/S+a

● Re>−a

● ROC:Res>>−a



  

Laplace Transforms

● Example 2: Find the Laplace transform and ROC of x(t)=e^at u(−t)

●

● L.T[x(t)]=L.T[e^at u(t)]=1/S−a

● Res<a

● ROC: Res < a.



  

Laplace Transforms

● Example 3: Find the Laplace transform and ROC of x(t)=e^−at u(t)+e^at 
u(−t)

● L.T[x(t)]=L.T[e^−atu(t)+e^atu(−t)]=1/S+a+1/S−a

● For (1/S+a)Re{s}>−a

● For 1/(S-a)Re{s}<a

● Referring to the diagram, combination 

region lies from –a to a. Hence, 

ROC:−a<Res<a



  

Laplace Transforms

● Causality and Stability:

● For a system to be causal, all poles of its transfer function must be right half 
of s-plane.

● A system is said to be stable when all poles of its transfer function lay on the 
left half of s-plane.



  

Laplace Transforms

● A system is said to be unstable when at least one pole of its transfer function 
is shifted to the right half of s-plane.

● A system is said to be marginally stable when at least one pole of its transfer 
function lies on the jω axis of s-plane.



  

Laplace Transforms

● ROC of Basic Functions



  

Laplace Transforms

● ROC of Basic Functions
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● ROC of Basic Functions



  

Laplace Transforms

● ROC of Basic Functions:



  

Laplace Transforms

● One of the most well known packages used today for solving laplace 
transforms is MathCAD. However like AutoCAD it is far from affordable for 
students. And in itself a steep learning curve.

● One open source package which is freely available (and designed to be 
compatible with MathCAD – for example, the scripts use the same syntax), 
is called Octave. And there are even editor apps such a Madona which 
provide basic functionality. But let us walk you through an example – and 
how to set this up. I have left errors in this shot to show you what to do if you 
encounter them → see next slide.

● Octave has a GUI and console window. The console is needed to carry out 
the installation of packages (to add special functions, rather like the utility 
files in Derive) and to display output.



  

Laplace Transforms

● First we need to install the 'symbolic' package:

● pkg install -forge symbolic



  

Laplace Transforms

● And do not forget to load it(!)....

●  pkg load symbolic



  

Laplace Transforms

● And now our script ought to run... Here it is. Use % to add comments.
% specify the variable a, t and% s as symbolic ones

syms a t s

% define function F(s)

F = 1/(s-a);

% ilaplace command to transform into

% time domain function f(t)

% Inverse Laplace Function

f1=ilaplace(F,s,t);

% Display the output value

disp(f1);

% Output can be verified by transforming

% function f1 into Laplace Domain F(s)

f=laplace(f1,t,s); % Laplace Function

disp(f);



  

Laplace Transforms

● And our transfer function is worked out. Finally...



  

Laplace Transforms

● This is the GUI interface. I am continuing to learn its functionality.



  

Laplace Transforms

● Remember, you can copy and paste the script into MathCAD also.

● There is an evaluation version which will function for only 30 days, and it can 
be used online also for 30 days, after this you must register to continue to 
use it. To install th whole package you need 17GB of diskspace also!

● For this reason, I found Octave which is desighed to be as compatible with 
MathCAD as possible, and to also seek other apps for other platforms. 

● Octave is also available for MacOS and Linux also.

● I have some open source software available at http://dfdn.info/dowwnloads 

● Including a Laplace transform solver for Android: 
http://dfdn.info/downloads/symbolab-10-2-2.apk 

http://dfdn.info/dowwnloads
http://dfdn.info/downloads/symbolab-10-2-2.apk


  

Laplace Transforms

● What are Laplace transforms used for?

● MATLAB and Octave provide commands for working with transforms, such as the 
Laplace and Fourier transforms. Transforms are used in science and engineering as 
a tool for simplifying analysis and look at data from another angle.

● For example, the Fourier transform allows us to convert a signal represented as a 
function of time to a function of frequency. Laplace transform allows us to convert a 
differential equation to an algebraic equation.

● MATLAB and Octave provide the laplace, fourier and fft commands to work with 
Laplace, Fourier and Fast Fourier transforms. 

● The Laplace transform of a function of time f(t) is given by the following integral:

● See 'Intergration' – the inverse of differentiation, for details. 

● Laplace transforms are in the course specification, so here comes a real example. 
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● Time to demonstrate the power of Laplace transforms (and Octave too). In 
this example, we will compute the Laplace transform of some commonly 
used functions. Here is the script:

● syms s t a b w

● laplace(a)

● laplace(t^2)

● laplace(t^9)

● laplace(exp(-b*t))

● laplace(sin(w*t))

● laplace(cos(w*t))



  

Laplace Transforms

● The output is in the console window. It takes 1-2 minutes to output, so have patience!



  

The Inverse Laplace Transform

● In some cases the inverse transform is required. Here is the script to 
execute:

● syms s t a b w

● ilaplace(1/s^7)

● ilaplace(2/(w+s))

● ilaplace(s/(s^2+4))

● ilaplace(exp(-b*t))

● ilaplace(w/(s^2 + w^2))

● ilaplace(s/(s^2 + w^2))



  

The Inverse Laplace Transform

● Now you may need to wait 1-2 minutes. Here is the output:



  

Vectors & Arrays 

● Applications of Vectors

● Vectors can be used by air-traffic controllers when tracking planes, by meteorologists when 
describing wind conditions, and by computer programmers when they are designing virtual 
worlds. In this section, we will present three applications of vectors that are commonly used in 
the study of physics: work, torque, and magnetic force.

● Vector Calculus

● Vector calculus, or vector analysis, is concerned with differentiation and integration of vector 
fields, primarily in 3-dimensional Euclidean space.

● Vector calculus plays an important role in differential geometry and in the study of partial 
differential equations. Vector calculus also deals with two integrals known as the line integrals 
and the surface integrals.

● Divergence and curl are two important operations on a vector field. They are important to the 
field of calculus for several reasons, including the use of curl and divergence to develop some 
higher-dimensional versions of the Fundamental Theorem of Calculus. In addition, curl and 
divergence appear in mathematical descriptions of fluid mechanics, electromagnetism, and 
elasticity theory, which are important concepts in physics and engineering.



  

Vectors & Arrays 

● Application of Vector Calculus

● It is used extensively in physics and engineering, especially in the description of 
electromagnetic fields, gravitational fields, and fluid flow.

● Vector Calculus is used in:

● Geodesics on a Surface

● Electric Field from Distributed Charge

● Plotting a Slice of a Vector Field

● To find the rate of change of the mass of a fluid flows.

● In rigid body dynamics in rectilinear and plane curvilinear motion along paths and in 
both rectangular.
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● Vector Space

● In mathematics, physics, and engineering, a vector space is a set of objects called 
vectors, which may be added together and multiplied by numbers called scalars. 
Scalars are often real numbers, but some vector spaces have scalar multiplication by 
complex numbers or, generally, by a scalar from any mathematical field. The simplest 
example of a vector space is the trivial one: {0}, which contains only the zero vector.

● Application of Vector Space

● Application of vector space is required in Engineering and computer science. Vector 
spaces have many applications as they occur frequently in common circumstances, 
namely wherever functions with values in some field are involved.

● They are used in Fourier Transformation

● Vector spaces furnish an abstract, coordinate-free way of dealing with geometrical 
and physical objects such as tensors.



  

Vectors & Arrays 

● Application of vector space in computer science: The minimax theorem of game 
theory stating the existence of a unique payoff when all players play optimally can be 
formulated and proven using vector space methods.

● Application of vector space in linear algebra: Quantum Mechanics is entirely based 
on it. Also important for time domain (state space) control theory and stresses in 
materials using tensors.

● In differential geometry, the tangent plane to a surface at a point is naturally a vector 
space whose origin is identified with the point of contact.

● Vector Algebra

● Vector algebra is specifically the basic algebraic operations of vector addition and 
scalar multiplication. Vector Algebra includes addition and subtraction of vectors, 
division and multiplication of vectors, along with dot product and cross product.
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● Application of Vector Algebra

● The list below is some of the most common Applications of Vectors Algebra.

● In many physical situations, we often need to know the direction of a vector. For example, we 
may want to know the direction of a magnetic field vector at some point or the direction of 
motion of an object.

● Vector algebra is useful to find the component of the force in a particular direction.

● In kinematics to find resultant displacement vectors and resultant velocity vectors.

● In mechanics to find resultant force vectors and the resultants of many derived vector quantities.

● In electricity and magnetism to find resultant electric or magnetic vector fields.

● Application of vectors in physics: Vectors can be used to represent physical quantities. Most 
commonly in physics, vectors are used to represent displacement, velocity, and acceleration. 
Vectors are a combination of magnitude and direction and are drawn as arrows.



  

Vectors & Arrays 

● Application of Resolution of Vectors in Daily Life

● Application of Resolution of Vectors in Daily Life is as listed below:

● Banking of Roads

● A road at curves is elevated at the farther end of curvature. The angle of banking is 
Ф. The normal reaction from the ground is N. The vehicles are inclined to vertical by 
angle Ф. N cos Ф balances the weight mg of the vehicle along vertical lines. N sin Ф 
supplies the centripetal force along the radius of curvature. That determines the 
maximum speed of the vehicle to avoid slipping.

● Projectile Motion

● A projectile (stone) thrown with an initial speed u at angle Ф with the horizontal, has a 
vertical component of (u sin Ф – g t) and the horizontal component of u cos Ф under 
components of vector.
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● Sharpening wooden pencil with a blade

● We cut the pencil at an angle. The component of force in the direction perpendicular 
to the pencil cuts the pencil. The component of force in the direction parallel to the 
pencil removes the thin wooden part.

● Earth’s magnetic field

● Earth’s magnetic field has two components B and H: perpendicular to Earth’s surface 
and parallel to the surface.

● Pendulum

● The tension in the string has two components to balance the weight and to give the 
centripetal force.
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● Following are the everyday applications of vectors in daily life@

● Navigating by air and by boat is generally done using vectors.

● Planes are given a vector to travel, and they use their speed to determine how far 
they need to go before turning or landing. Flight plans are made using a series of 
vectors.

● Sports instructions are based on using vectors. For example, wide receivers playing 
American football might run a route where they run seven meters down the field 
before turning left 45 degrees and running in that direction. Sports commentary also 
depends on vectors. Only a few sports have fields with grids, so discussions revolve 
around the direction and speed of the player.
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● Real Life Application of Parallelogram Law of Vectors:

● Let P and Q be two vectors acting simultaneously at a point and represented both in 
magnitude and direction by two adjacent sides OA and OD of a parallelogram OABD 
as shown in the figure.

● Let θ be the angle between P and Q and R be the resultant vector. Then, according 
to the parallelogram law of vector addition, diagonal OB represents the resultant of P 
and Q.
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● The magnitude of resultant vector is given by the following formula

R =√( P²+Q² + 2PQ cos θ)

● Φ =tan−(Q sin θ / P+Q sin θ)

● Two forces of magnitude 6N and 10N are inclined at an angle of 60° with each other. 
Calculate the magnitude of the resultant and the angle made by the resultant with 6N 
force.

● Let P and Q be two forces with magnitude 6N and 10N respectively and θ be the 
angle between them. Let R be the resultant force.

● So, P = 6N, Q = 10N and θ = 60°

● We have: R =√(P² + Q² + 2PQ cos θ)
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R=√( 6² + 10² + 2 × 6 × 10 cos 60)

So R = √196 = 14
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● System of homogeneous linear equations AX = 0. 

● X = 0. is always a solution; means all the unknowns has same value as zero. (This is 
also called trivial solution)

● If P(A) = number of unknowns, unique solution.

● If P(A) < number of unknowns, infinite number of solutions.

● System of non-homogeneous linear equations AX = B. 

● If P[A:B] ≠P(A), No solution.

● If P[A:B] = P(A) = the number of unknown variables, unique solution.

● If P[A:B] = P(A) ≠ number of unknown, infinite number of solutions.

● Here P[A:B] is rank of gauss elimination representation of AX = B. 

● There are two states of the Linear equation system: 
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● Consistent State: A System of equations having one or more solutions is called a 
consistent system of equations.

● Inconsistent State: A System of equations having no solutions is called inconsistent 
system of equations.

● Linear dependence and Linear independence of vector: 

● Linear Dependence: A set of vectors X1 ,X2 ….Xr is said to be linearly dependent if 
there exist r scalars k1 ,k2 …..kr such that: k1 X1 + k2X2 +……..kr Xr = 0. 

● Linear Independence: A set of vectors X1 ,X2….Xr is said to be linearly independent 
if for all r scalars k1,k2 …..krsuch that k1X1+ k2 X2+……..krXr = 0, then k1 = k2 
=……. = kr = 0. 
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● How to determine linear dependency and independency ? 

● Let X1, X2 ….Xr be the given vectors. Construct a matrix with the given vectors as its 
rows. 

● If the rank of the matrix of the given vectors is less than the number of vectors, then 
the vectors are linearly dependent.

● If the rank of the matrix of the given vectors is equal to the number of vectors, then 
the vectors are linearly independent. 
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● Eigen Value and Eigen Vector

● Eigen vector of a matrix A is a vector represented by a matrix X such that when X is 
multiplied with matrix A, then the direction of the resultant matrix remains the same 
as vector X. 

● Mathematically, above statement can be represented as: 

● AX = λX

● where A is any arbitrary matrix, λ are eigen values and X is an eigen vector 
corresponding to each eigen value.

● Here, we can see that AX is parallel to X. So, X is an eigen vector.
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● Method to find eigen vectors and eigen values of any square matrix A 

● We know that,

● AX = λX

● => AX – λX = 0

● => (A – λI) X = 0 …..(1)

● Above condition will be true only if (A – λI) is singular. That means,

● |A – λI| = 0 …..(2)

● (2) is known as characteristic equation of the matrix.

● The roots of the characteristic equation are the eigen values of the matrix A.

● Now, to find the eigen vectors, we simply put each eigen value into (1) and solve it by 
Gaussian elimination, that is, convert the augmented matrix (A – λI) = 0 to row 
echelon form and solve the linear system of equations thus obtained.
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● Some important properties of eigen values

● Eigen values of real symmetric and hermitian matrices are real

● Eigen values of real skew symmetric and skew hermitian matrices are either pure 
imaginary or zero

● Eigen values of unitary and orthogonal matrices are of unit modulus |λ| = 1

● If λ1, =λ2…….λn are the eigen values of A, then kλ1, kλ2…….kλn are eigen values of 
kA

● If λ1, λ2…….λn are the eigen values of A, then 1/λ1, 1/λ2…….1/λn are eigen values 
of A-1

● If λ1, λ2…….λn are the eigen values of A, then λ1k, λ2k…….λnk are eigen values of 
Ak

● Eigen values of A = Eigen Values of AT (Transpose)
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● Sum of Eigen Values = Trace of A (Sum of diagonal elements of A)

● Product of Eigen Values = |A|

● Maximum number of distinct eigen values of A = Size of A

● If A and B are two matrices of same order then, Eigen values of AB = Eigen values of 
BA
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● A vector is a one-dimensional array of numbers.  allows creating two types of Vectors 
& Arrays −

● Row Vectors & Arrays;

● Column Vectors & Arrays.

● Row Vectors & Arrays are created by enclosing the set of elements in square 
brackets, using space or comma to delimit the elements.

● Column Vectors & Arrays are created by enclosing the set of elements in square 
brackets, using semicolon to delimit the elements.

● Vector Operations

● In this section, let me demonstrate the following vector operations...
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● A vector is a one-dimensional array of numbers. MATLAB and Octave allows creating 
two types of Vectors & Arrays −

● Row Vectors & Arrays;

● Column Vectors & Arrays.

● Row Vectors & Arrays are created by enclosing the set of elements in square 
brackets, using space or comma to delimit the elements.

● Column Vectors & Arrays are created by enclosing the set of elements in square 
brackets, using semicolon to delimit the elements.

● Vector Operations

● In this section, let me demonstrate the following vector operations...
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● Addition and Subtraction of Vectors & Arrays

● Scalar Multiplication of Vectors & Arrays

● Transpose of a Vector

● Appending Vectors & Arrays

● Magnitude of a Vector

● Vector Dot Product

● Vectors & Arrays with Uniformly Spaced Elements
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● A matrix is a two-dimensional array of numbers.

● In Octave, you create a matrix by entering elements in each row as comma or space 
delimited numbers and using semicolons to mark the end of each row.

● For example, let us create a 4-by-5 matrix a:

● A = [ 1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8]

● Octave will execute the above statement and return the following result −

● a =

●       1     2     3     4     5

●       2     3     4     5     6

●       3     4     5     6     7

●       4     5     6     7     8
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● Referencing the Elements of a Matrix:

● To reference an element in the mth row and nth column, of a matrix mx, we write −

● mx(m, n);

● For example, to refer to the element in the 2nd row and 5th column, of the matrix a, 
as created in the last section, we type −

● a = [ 1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

● a(2,5)

● Octave will execute the above statement and return the following result −

● ans =  6
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● To reference all the elements in the mth column we type A(:,m).

● Let us create a column vector v, from the elements of the 4th row of the matrix a −

● Live Demo

● a = [ 1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

● v = a(:,4)

● Octave will execute the above statement and return the following result −

● v =

●       4

●       5

●       6

●       7
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● You can also select the elements in the mth through nth columns, for this we write −

● a(:,m:n)

● Let us create a smaller matrix taking the elements from the second and third columns −

● a = [ 1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

● a(:, 2:3)

● Octave will execute the above statement and return the following result −

● ans =

●       2     3

●       3     4

●       4     5

●       5     6

● In the same way, you can create a sub-matrix taking a sub-part of a matrix.
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● a = [ 1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

● a(:, 2:3)

● Octave will execute the above statement and return the following result −

● ans =

●       2     3

●       3     4

●       4     5

●       5     6

● In the same way, you can create a sub-matrix taking a sub-part of a matrix. For 
example, let us create a sub-matrix sa taking the inner subpart of a −
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● 3     4     5     

● 4     5     6     

● To do this, write −

● a = [ 1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

● sa = a(2:3,2:4)

● Octave will execute the above statement and return the following result −

● sa =

●       3     4     5

●       4     5     6
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● Deleting a Row or a Column in a Matrix

● You can delete an entire row or column of a matrix by assigning an empty set of 
square braces [] to that row or column. Basically, [] denotes an empty array.

● For example, let us delete the fourth row of a −

● a = [ 1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

● a( 4 , : ) = []

● Octave will execute the above statement and return the following result −

● a =

●       1     2     3     4     5

●       2     3     4     5     6

●       3     4     5     6     7
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● Next, let us delete the fifth column of a −

● a = [ 1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

● a(: , 5)=[]

● Octave will execute the above statement and return the following result −

● a =

●       1     2     3     4

●       2     3     4     5

●       3     4     5     6

●       4     5     6     7
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● Example

● In this example, let us create a 3-by-3 matrix m, then we will copy the second and third rows of 
this matrix twice to create a 4-by-3 matrix.

● Create a script file with the following code −

● a = [ 1 2 3 ; 4 5 6; 7 8 9];

● new_mat = a([2,3,2,3],:)

● When you run the file, it displays the following result −

● new_mat =

●       4     5     6

●       7     8     9

●       4     5     6

●       7     8     9
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● Matrix Operations

● In this section, let us discuss the following basic and commonly used matrix 
operations −

● Addition and Subtraction of Matrices

● Division of Matrices

● Scalar Operations of Matrices

● Transpose of a Matrix

● Concatenating Matrices

● Matrix Multiplication

● Determinant of a Matrix

● Inverse of a Matrix
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● All variables of all data types in Octave  are multidimensional arrays. A vector is a 
one-dimensional array and a matrix is a two-dimensional array.

● We have already discussed vectors and matrices. In this chapter, we will discuss 
multidimensional arrays. However, before that, let us discuss some special types of 
arrays.

● Special Arrays in Octave

● In this section, we will discuss some functions that create some special arrays. For all 
these functions, a single argument creates a square array, double arguments create 
rectangular array.
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● The zeros() function creates an array of all zeros −

● For example −

● zeros(5)

● Octave will execute the above statement and return the following result −

● ans =

●       0     0     0     0     0

●       0     0     0     0     0

●       0     0     0     0     0

●       0     0     0     0     0

●       0     0     0     0     0
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●

● The ones() function creates an array of all ones −

● For example −

● ones(4,3)

● Octave will execute the above statement and return the following result −

● ans =

●       1     1     1

●       1     1     1

●       1     1     1

●       1     1     1
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● The eye() function creates an identity matrix.

● For example −

● Live Demo

● eye(4)

● Octave will execute the above statement and return the following result −

● ans =

●       1     0     0     0

●       0     1     0     0

●       0     0     1     0

●       0     0     0     1
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● The rand() function creates an array of uniformly distributed random numbers on (0,1) 
−

● For example −

● rand(3, 5)

● Octave will execute the above statement and return the following result −

● ans =

●    0.8147    0.9134    0.2785    0.9649    0.9572

●    0.9058    0.6324    0.5469    0.1576    0.4854

●    0.1270    0.0975    0.9575    0.9706    0.8003
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● A Magic Square:

● A magic square is a square that produces the same sum, when its elements are added row-
wise, column-wise or diagonally.

● The magic() function creates a magic square array. It takes a singular argument that gives the 
size of the square. The argument must be a scalar greater than or equal to 3.

● magic(4)

● Octave will execute the above statement and return the following result −

● ans =

●    16     2     3    13

●    5    11    10     8

●    9     7     6    12

●    4    14    15     1

●
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● Multidimensional Arrays

● An array having more than two dimensions is called a multidimensional array in 
MATLAB. Multidimensional arrays in MATLAB are an extension of the normal two-
dimensional matrix.

● Generally to generate a multidimensional array, we first create a two-dimensional 
array and extend it.

● For example, let's create a two-dimensional array a.

● Live Demo

● a = [7 9 5; 6 1 9; 4 3 2]
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● Octave will execute the above statement and return the following result −

● a =

●    7     9     5

●    6     1     9

●    4     3     2

● The array a is a 3-by-3 array; we can add a third dimension to a, by providing the 
values like −

● a(:, :, 2)= [ 1 2 3; 4 5 6; 7 8 9]
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● Octave will execute the above statement and return the following result −

● a =

● ans(:,:,1) =

●    0   0   0

●    0   0   0

●    0   0   0

● ans(:,:,2) =

●    1   2   3

●    4   5   6

●    7   8   9
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● We can also create multidimensional arrays using the ones(), zeros() or the rand() 
functions.

● Live Demo

● b = rand(4,3,2)

● Octave will execute the above statement and return the following result −

● b(:,:,1) =

●    0.0344    0.7952    0.6463

●    0.4387    0.1869    0.7094

●    0.3816    0.4898    0.7547

●    0.7655    0.4456    0.2760
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● b(:,:,2) =

●    0.6797    0.4984    0.2238

●    0.6551    0.9597    0.7513

●    0.1626    0.3404    0.2551

●    0.1190    0.5853    0.5060
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● We can also use the cat() function to build multidimensional arrays. It concatenates a 
list of arrays along a specified dimension −

● Syntax for the cat() function is −

● B = cat(dim, A1, A2...)

● Where,

● B is the new array created

● A1, A2, ... are the arrays to be concatenated

● dim is the dimension along which to concatenate the arrays

● Example

● Create a script file and type the following code into it −
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● a = [9 8 7; 6 5 4; 3 2 1];

● b = [1 2 3; 4 5 6; 7 8 9];

● c = cat(3, a, b, [ 2 3 1; 4 7 8; 3 9 0])

● When you run the file it displays:
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● c(:,:,1) =

●       9     8     7

●       6     5     4

●       3     2     1

● c(:,:,2) =

●       1     2     3

●       4     5     6

●       7     8     9

● c(:,:,3) =

●       2     3     1

●       4     7     8

●       3     9     0
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● Array Functions

● MATLAB provides the following functions to sort, rotate, permute, reshape, or shift 
array contents.

●

● FunctionPurpose

● length Length of vector or largest array dimension

● ndims Number of array dimensions

● numel Number of array elements

● size Array dimensions

● iscolumnDetermines whether input is column vector

● isempty Determines whether array is empty
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● ismatrix Determines whether input is matrix

● isrow Determines whether input is row vector

● isscalar Determines whether input is scalar

● isvector Determines whether input is vector

● blkdiag Constructs block diagonal matrix from input arguments

● circshift Shifts array circularly

● ctranspose Complex conjugate transpose

● diagDiagonal matrices and diagonals of matrix

● flipdim Flips array along specified dimension
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● fliplr Flips matrix from left to right

● flipud Flips matrix up to down

● ipermuteInverses permute dimensions of N-D array

● permute Rearranges dimensions of N-D array

● repmat Replicates and tile array

● reshape Reshapes array

● rot90 Rotates matrix 90 degrees

● shiftdim Shifts dimensions
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● fliplr Flips matrix from left to right

● flipud Flips matrix up to down

● ipermuteInverses permute dimensions of N-D array

● permute Rearranges dimensions of N-D array

● repmat Replicates and tile array

● reshape Reshapes array

● rot90 Rotates matrix 90 degrees

● shiftdim Shifts dimensions
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● A matrix represents a collection of numbers arranged in an order of rows and 
columns. It is necessary to enclose the elements of a matrix in parentheses or 
brackets. 

● Order of a Matrix : 

● The order of a matrix is defined in terms of its number of rows and columns. 

● Order of a matrix = No. of rows ×No. of columns 

● Therefore Matrix [M] is a matrix of order 3 × 3. 

● Transpose of a Matrix : 

● The transpose [M]T of an m x n matrix [M] is the n x m matrix obtained by 
interchanging the rows and columns of [M]. 

● if A= [aij] mxn , then AT = [bij] n^xm where bij = aji 
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● Properties of transpose of a matrix: 

● (AT)^T = A

● (A+B)^T = A^T + B^T

● (AB)^T = B^T A^T

● Singular and Nonsingular Matrix: 

● Singular Matrix: A square matrix is said to be singular matrix if its determinant is zero 
i.e. |A|=0

● Nonsingular Matrix: A square matrix is said to be non-singular matrix if its 
determinant is non-zero.
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● Square Matrix: A square Matrix has as many rows as it has columns. i.e. no of rows = 
no of columns. 

● Symmetric matrix: A square matrix is said to be symmetric if the transpose of original 
matrix is equal to its original matrix. i.e. (AT) = A. 

● Skew-symmetric: A skew-symmetric (or antisymmetric or antimetric[1]) matrix is a 
square matrix whose transpose equals its negative.i.e. (AT) = -A.

● Diagonal Matrix: A diagonal matrix is a matrix in which the entries outside the main 
diagonal are all zero. The term usually refers to square matrices. 

● Identity Matrix:A square matrix in which all the elements of the principal diagonal are 
ones and all other elements are zeros.Identity matrix is denoted as I. 
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● Orthogonal Matrix: A matrix is said to be orthogonal if AA^T = A^TA = I 

● Idempotent Matrix: A matrix is said to be idempotent if A² = A 

● Involutory Matrix: A matrix is said to be Involutory if A² = I. 

● Adjoint of a square matrix: 
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● Properties of Adjoint: 

● A(Adj A) = (Adj A) A = |A| In

● Adj(AB) = (Adj B).(Adj A)

● |Adj A|= |A|^n-1

● Adj(kA) = kn^-1 Adj(A)

● Inverse of a square matrix: 

● Here |A| should not be equal to zero, means matrix A should be non-singular. 

● Properties of inverse: 

● 1. (A^-1)^-1 = A 

● 2. (AB)-^1 = B^-1A^-1 

● 3. Only a non-singular square matrix can have an inverse. 
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● Let A=[aij] n^xn is a square matrix of order n, then the sum of diagonal elements is 
called the trace of a matrix which is denoted by tr(A). tr(A) = a11 + a22 + a33+ ……….+ 
ann. Remember trace of a matrix is also equal to the sum of eigen value of the matrix. 
For example: 
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● Properties of trace of matrix: 

● Let A and B be any two square matrices of order n, then

● tr(kA) = k tr(A) where k is a scalar.

● tr(A+B) = tr(A)+tr(B)

● tr(A-B) = tr(A)-tr(B)

● tr(AB) = tr(BA)
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● Properties of trace of matrix: 

● Let A and B be any two square matrices of order n, then 

● tr(kA) = k tr(A) where k is a scalar.

● tr(A+B) = tr(A)+tr(B)

● tr(A-B) = tr(A)-tr(B)

● tr(AB) = tr(BA)



  

Matrices

● Solution of a system of linear equations: 

● Linear equations can have three kind of possible solutions: 

● No Solution

● Unique Solution

● Infinite Solution

● Rank of a matrix: Rank of matrix is the number of non-zero rows in the row reduced 
form or the maximum number of independent rows or the maximum number of 
independent columns. 

● Let A be any mxn matrix and it has square sub-matrices of different orders. A matrix 
is said to be of rank r, if it satisfies the following properties...
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● It has at least one square sub-matrices of order r who has non-zero determinant.

● All the determinants of square sub-matrices of order (r+1) or higher than r are zero.

● Rank is denoted as P(A). 

● if A is a non-singular matrix of order n, then rank of A = n i.e. P(A) = n. 
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● Properties of rank of a matrix: 

● If A is a null matrix then P(A) = 0 i.e. Rank of null matrix is zero.

● If In is the n^xn unit matrix then P(A) = n.

● Rank of a matrix A mxn , P(A) ≤ min(m,n). Thus P(A) ≤m and P(A) ≤ n.

● P(A n^xn ) = n if |A| ≠ 0

● If P(A) = m and P(B)=n then P(AB) ≤ min(m,n).

● If A and B are square matrices of order n then P(AB) ? P(A) + P(B) – n.

● If Am×1 is a non zero column matrix and B1×n is a non zero row matrix then P(AB) = 
1.

● The rank of a skew symmetric matrix cannot be equal to one.
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● Determinants are mathematical objects which have applications in engineering 
mathematics. For example, they can be used in the solution of simultaneous 
equations, and to evaluate vector products. Determinants and matrices, in linear 
algebra, are used to solve linear equations by applying Cramer’s rule to a set of non-
homogeneous equations which are in linear form. Determinants are calculated for 
square matrices only. If the determinant of a matrix is zero, it is called a singular 
determinant and if it is one, then it is known as unimodular. For the system of 
equations to have a unique solution, the determinant of the matrix must be 
nonsingular, that is its value must be nonzero. 

● See Matrices for details.
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● There are a number of types of matrix.
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● Definition of Determinant

● A determinant can be defined in many ways for a square matrix.

● The first and most simple way is to formulate the determinant by taking into account 
the top row elements and the corresponding minors. Take the first element of the top 
row and multiply it by it’s minor, then subtract the product of the second element and 
its minor. Continue to alternately add and subtract the product of each element of the 
top row with its respective minor until all the elements of the top row have been 
considered.

● For example let us consider a 4×4 matrix A....
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● Second Method to find the determinant:

● The second way to define a determinant is to express in terms of the columns of the 
matrix by expressing an n x n matrix in terms of the column vectors.
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● Consider the column vectors of matrix A as A = [ a1, a2, a3, …an] where any element 
aj is a vector of size x.

● Then the determinant of matrix A is defined such that

● Det [ a1 + a2 …. baj+cv … ax ] = b det (A) + c det [ a1+ a2 + … v … ax ]

● Det [ a1 + a2 …. aj aj+1… ax ] = – det [ a1+ a2 + … aj+1 aj … ax ]

● Det (I) = 1

● Where the scalars are denoted by b and c, a vector of size x is denoted by v, and the 
identity matrix of size x is denoted by I.

● We can infer from these equations that the determinant is a linear function of the 
columns. Further, we observe that the sign of the determinant can be interchanged 
by interchanging the position of adjacent columns. The identity matrix of the 
respective unit scalar is mapped by the alternating multi-linear function of the 
columns. This function is the determinant of the matrix.



  

Determinents

● Properties of Determinant

● If In is the identity matrix of the order n^xn, then det(I) = 1

● If the matrix MT is the transpose of matrix M, then det (MT) = det (M)

● If matrix M-1 is the inverse of matrix M, then det (M-1) = 1/det (M) = det (M)-1

● If two square matrices M and N have the same size, then det (MN) = det (M) det (N)

● If matrix M has a size axa and C is a constant, then det (CM) = Ca det (M)

● If X, Y, and Z are three positive semidefinite matrices of equal size, then the following holds true 
along with the corollary det (X+Y) ≥ det(X) + det (Y) for X,Y, Z ≥ 0 det (X+Y+Z) + det C ≥ det 
(X+Y) + det (Y+Z)

● In a triangular matrix, the determinant is equal to the product of the diagonal elements.

● The determinant of a matrix is zero if all the elements of the matrix are zero.

● Laplace’s Formula and the Adjugate Matrix



  

Determinents

● Apart from these properties of determinants, there are some other properties, such as...

● Reflection Property

● All-zero property

● Proportionality property or Repetition Property

● Switching Property

● Sum Property

● Scalar multiple Property

● Factor Property

● Triangle Property

● Invariance Property

● The determinant of Cofactor matrix



  

Determinents

● Laplace Formula for Determinant:

● With Laplace’s formula, the determinant of a matrix can be expressed in terms of the 
minors of the matrix.

● If matrix Bxy is the minor of matrix A obtained by removing xth and yth column and 
has a size of ( j-1 x  j-1), then the determinant of the matrix A is given by:
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The adjugate matrix is obtained by transposing the matrix containing the cofactors and is 
given by the equation:

● Determinant of a Matrix

● To solve the system of linear equations and to find the inverse of a matrix, the 
determinants play an important role. Now, let us discuss how to find the determinant 
of 2×2 matrix and 3×3 matrix. If A is a matrix, then the determinant of a matrix A is 
generally represented using det (A) or |A|.

● Finding Determinants for 2×2 matrix:



  

Determinents

● Finding Determinants for 3×3 Matrix: assume the 3×3 matrix, for example, then...



  

Determinents

● Frequently Asked Questions on Determinants and Matrices:

● Define a matrix A matrix is defined as the rectangular array of numbers. The collection of numbers are 
arranged in rows and columns Q2.

● What is meant by determinant?

● The determinant is defined as a scalar value which is associated with the square matrix. If X is a matrix, then 
the determinant of a matrix is represented by |X| or det (X).

● The different types of matrices are:

● Square matrix

● Diagonal matrix

● Zero matrix

● Symmetric matrix

● Identity matrix

● Upper triangular matrix

● Lower Triangular Matrix



  

Determinents

● Why do we use determinants?

● The determinants are used to solve the system of linear equations and it is also used to find the 
inverse of a matrix.

● What are the important properties of determinants?

● The properties of determinants are:

● Reflection property

● Triangle property

● All zero property

● Sum property

● Scalar multiple property

● Factor property

● Proportionality Property



  

Vector calculus in Engineering

● Scalars and vectors defined...

● The simplest kind of physical quantity is one that can be completely specified by its 
magnitude, a single number, together with the units in which it is measured. Such a 
quantity is called a scalar and examples include temperature, time and density as a 
few examples. So, a scalar is any quantity which as a magnitude – but no directional 
component.

● For example, the statement '27 decrees Celcius North' or 27 ºC North, would me 
meaningless.

● A vector is a quantity that requires both a magnitude (≥ 0) and a direction in space to 
specify it completely; we may think of it as an arrow in space.



  

Vector calculus in Engineering

● A familiar example is force, which has a magnitude (strength) measured in newtons 
and a direction of application. The large number of vectors that are used to describe 
the physical world include velocity, displacement, momentum and electric field. 
Vectors are also used to describe quantities such as angular momentum and surface 
elements (a surface element has an area and a direction defined by the normal to its 
tangent plane); in such cases their definitions may seem somewhat arbitrary (though 
in fact they are standard) and not as physically intuitive as for vectors such as force. 
A vector is denoted by bold type, the convention of this book, or by underlining, the 
latter being much used in handwritten work.

● Vector Quantities: There are physical quantities in engineering analysis, that has their 
values determined by NOT only the value of the variables that are associate with the 
quantities, but also by the directions that these quantities orient. 
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● Example of vector quantifies include the velocities of automobile travel in both speed 
and direction (in physics velicity covers both components;

● The acceleration of an object as a result of force acting on it (gravity and friction are 
both net forces);

● GPS co-ordinates – which are in fact 4 dimensional due to how they are calculated 
(even the theory of relativity has to be allowed for in these calculations!);

● Forces themselves. And so forth.

● In short – if it has only a magnitude, it is a scalar; of it has a magnitude and a 
direction, it is a vector!
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● We have introduced the algebra of vectors, and iwe considered how to transform one 
vector into another using a linear operator. In this chapter and the next we discuss 
the calculus of vectors, i.e. the differentiation and integration both of vectors 
describing particular bodies, such as the velocity of a particle, and of vector fields, in 
which a vector is defined as a function of the coordinates throughout some volume 
(one-, two- or three-dimensional). Since the aim of this is to develop methods for 
handling multi-dimensional physical situations, we will assume throughout that the 
functions with which we have to deal have sufficiently amenable mathematical 
properties, in particular that they are continuous and differentiable.

● Differentiation of vectors:

● Let us consider a vector a that is a function of a scalar variable u. By this we mean 
that with each value of u we associate a vector a(u). For example, in Cartesian 
coordinates a(u) = ax(u)i + ay(u)j + az(u)k, where ax(u), ay(u) and az(u) are scalar 
functions of u and are the components of the vector a(u) in the x-, y- and z- directions 
respectively. We note that if a(u) is continuous at some point u = u0 then this implies 
that each of the Cartesian components ax(u), ay(u) and az(u) is also continuous 
there.
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● The determinant of an n × n matrix can be defined in several equivalent ways, the 
most common being Leibniz formula, which expresses the determinant as a sum of 

● n! (the factorial of n) signed products of matrix entries. It can be computed by the 
Laplace expansion, which expresses the determinant as a linear combination of 
determinants of submatrices, or with Gaussian elimination, which expresses the 
determinant as the product of the diagonal entries of a diagonal matrix that is 
obtained by a succession of elementary row operations. To recap....
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● The determinant of an n × n matrix can be defined in several equivalent ways, the 
most common being Leibniz formula, which expresses the determinant as a sum of!

● n! (the factorial of n) signed products of matrix entries. It can be computed by the 
Laplace expansion, which expresses the determinant as a linear combination of 
determinants of submatrices, or with Gaussian elimination, which expresses the 
determinant as the product of the diagonal entries of a diagonal matrix that is 
obtained by a succession of elementary row operations.
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● Determinants can also be defined by some of their properties: the determinant is the 
unique function defined on the n × n matrices that has the four following properties. 
The determinant of the identity matrix is 1; the exchange of two rows multiplies the 
determinant by −1; multiplying a row by a number multiplies the determinant by this 
number; and adding to a row a multiple of another row does not change the 
determinant. (The above properties relating to rows may be replaced by the 
corresponding statements with respect to columns.)

● Determinants occur throughout mathematics. For example, a matrix is often used to 
represent the coefficients in a system of linear equations, and determinants can be 
used to solve these equations (Cramer's rule), although other methods of solution are 
computationally much more efficient. Determinants are used for defining the 
characteristic polynomial of a matrix, whose roots are the eigenvalues. In geometry, 
the signed n-dimensional volume of a n-dimensional parallelepiped is expressed by a 
determinant, and the determinant of (the matrix of) a linear transformation determines 
how the orientation and the n-dimensional volume are transformed. This is used in 
calculus with exterior differential forms and the Jacobian determinant, in particular for 
changes of variables in multiple integrals.
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● Graphic and mathematical Representation of Vector Quantities:

● Vector are usually expressed in BOLD FACED letters, e.g. A for vector

● A

● Graphic Representation of a Vector A:
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● Mathematically it is expressed (in a rectangular coordinates (x,y) as:

● Vector Quantities cn be decomposed into seperate vector quantities as illustrated..
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● A simple and convenient way to express vector quantities:

● All unit vectors i, j and k have a magnitudes of 1.0 (i.e. Unit).
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● A = xi + yj + zk

● where x = magnitude of the component of Vector A in the x-coordinate

● y = magnitude of the component of Vector A in the y-coordinate

● z = magnitude of the component of Vector A in the z-coordinate

● We may thus evaluate the magnitude of the vector A to be the sum of the magnitudes 
of all its components as: 



  

Vector calculus in Engineering

● Examples of using unit vectors in engineering analysis:

● : A vector A in Figure 3.2(b) has its two components along the x- and y-axis with 
respective magnitudes of 6 units and 4 units. Find the magnitude and direction of the 
vector A. Solution: Let us first illustrate the vector A in the x-y plane:



  

Vector calculus in Engineering

● A Vector in 3-D Space in a Rectangular coordinate System:
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● Addition and Subtraction of Two Vectors:

● Addition or subtraction of two vectors expressed in terms of UNIT vectors is easily 
done by the

● addition or subtraction of the corresponding coefficients of the respective unit vectors 
i, j and k as Illustrated below:

● Given: The two vectors: Vector A1= x1i + y1j +z1k and Vector

● A2 = x2i +y2J + z2k

● We will have the addition and subtraction of these two vectors to be:
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● If vectors A = 2i +4 k and B = 5j +6k, determine: 

● a) what planes do these two vectors exist, and: 

● (b) their respective magnitudes. (c) the summation of these two vectors:

● Vector A may be expressed as: A = 2i +0j + 4k, so it is positioned in the x-z plane.

● Vector B on the other hand may be expressed as:

● B = 0i + 5j +6k with no value along the x-coordinate. So, it is positioned in the y-z 
plane in a rectangular coordinate system.
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● The addition of these two vectors is: 



  

Vector calculus in Engineering

● A Mathcast illustrated example:
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● Example of Vector Quantity in 2-D Plane-Forces acting on a plane:
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● Example of Vector Quantity in 3-D Space - Forces acting in a space:
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● ADDITIONS AND SUBTRACTIONS OF VECTORS:

● A cruise ship begins its journey from Port O to its destination of Port C with 
intermediate stops over two ports at A and B as shown In the figure.

● The ship sails 100 km in the direction 30º to northeast to Port A.

● From Port A, the ship sails 180 km in the direction 15º north east of

● Port A to Port B. The last leg of the cruise is from Port B to Port C in the

direction of 25º northwest to the north of Port C. Find the total distance the ship traveled 
from Port O to Port C?
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We realise that the distances that the cruise ship sails are also specified by the specified 
direction, so the distances that the ship sail in each port are vector quantities. 
Consequently, we define the following position vectors, representing the change of the 
position while the ship sails...
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● Multiplication of Vectors:

● There are 3 types of multiplications of vectors: (1) Scalar product, (2) Dot product,

● and (3) Cross product.

Scalar Multiplier: It involves the product of a scalar m to a vector A. Mathematically, it 
is expressed as: R = m (A) = mA where m = a scaler quantity

● Thus for vector A = Ax i + Ay j + Az k, in which Ax, Ay and Az are the magnitude of the 
components of vector A along the x-, y- and z-coordinate respectively.

● The resultant vector R is expressed as: R = mAx i + mAy j+ mAz kin which i, j and k 
are unit vectors along x-, y- and z-coordinates in a rectangular coordinate system 
respectively.
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●  Scalar Multiplier

● It involves the product of a scalar m to a vector A. Mathematically, it is expressed as:

● R = m (A) = mA where m = a scaler quantity

● Thus for vector A = Ax i + Ay j + Az k, in which Ax, Ay and Az are the magnitude of the 
components of vector A along the x-, y- and z-coordinate respectively.

● The resultant vector R is expressed as:

● R = mAx i + mAy j+ mAz k

● in which i, j and k are unit vectors along x-, y- and z-coordinates in a 
rectangularcoordinate system respectively.
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● Dot Products:

The DOT product of two vectors A and B is expressed with a “dot” between the two 
vectors as: A  B    ꟾAꟾ ꟾBꟾ cos θ = a scalar

● where θ is the angle between these two vectors

● We notice that the DOT product of two vectors results in a SCALAR

● The algebraic definition of dot product of vectors can be shown as:

●   AxBx  A yBy  A zBz A B

● where Ax, Ay and Az = the magnitude of the components of vector A along the x-, y- 
and z-coordinate respectively, and Bx, By and Bz = the magnitude of the components 
of vector B along the same rectangular coordinates.
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● Example: Determine (a) the result of dot product of the two vectors: A = 2i + 7j + 15k 
and B = 21i + 31j + 41k, and (b) the angle between these two vectors:

● Solution: (a) By using the above expression, we may get the result of the dot product 
of vectors A and B to be: A●B = 2x21 + 7X³1+ 15x41 = 874

● Example: We need to compute the magnitudes of both vectors A = 16.67 and B = 
55.52 units, which lead to the angle θ between vectors A and B to be:
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●  Cross Product:

● Physical examples for Cross product of vectors: these are physical phenomena which 
we have to deal with as engineers. They are plane actions which result in a physical 
qualtity of some kind, which occour in a direction perpendicular to the plane of action 
which produces this physical quantity. These are equivilent in the mechanical and 
electrical world. Indeed, units of physical force have electrical analogues in many 
cases, as I stress in analouge electronics and electromechanical courses.

● Mechanical example: force application which produces rotation of the pipe:

This is perpendicular to the plane in which force F and the movement arm lie: 
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●
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● Electrical Example: Produce a motion of an electric conductor by passing a current i 
in the conductor surrounded by a magnetic field B:

● Here, we have the case in which the current passing the conductor in a magnetic field 
with a flux intensity B in the direction of the Middle and Index fingers of a right-hand 
respectively in the Fleming's right-hand rule. 
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● This leads to the prediction of the motion of the conductor represented by the thumb 
by the following expression:
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● Mathematical expression of Cross product of vectors:
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● Example: Determine the torque applied to the pipe in the Figure by a force F = 45 N 
with an angle θ = 60o to the y-axis at a distance d = 50 cm from the centerline of the 
pipe.

● We may express the force vector F = (Fsinθ) i + (Fcosθ) j = (45 sin 60o) i + (45 cos 
60o) j, or F = 38.97i + 22.5j. The moment arm vector d is and it may be expressed as: 
d = dj = 50 j. The resultant vector Mz = F x d can thus be computed using the above 
matrix form to be:

● The resultant torque on the pipe thus has a magnitude of Mz = 1948.5 N-cm in the 
direction along the z-axis.
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● Useful Expressions of Multiplications of Vectors:
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● Vector Calculus:

● Vector calculus is used to solve engineering problems that involve vectors that not 
only need to be defined by both its magnitudes and directions, but also on their 
magnitudes and direction change CONTINUOUSLY with the time and positions.

● There are many cases that this type of problems happen. We will illustrate the case 
by vehicles traveling on a steep and winding street by the name of Lombard Drive in 
the City of San Francisco (see pictures below). This 180 meters long paved crooked 
block involves eight sharp turns on a steep down slope at 27% which is much too 
steep by any standard for urban streets. Drivers driving their vehicles on that street 
need to constantly change the velocity (a vector quantity) of their cars in order to 
pass this steep and winding street. In other word, we have a situation in which the 
velocity v (a vector) with its values depending upon the locations on the street, and 
time, Or mathematically, we have a vector function: v(x,y,z,t) in which (x,y,z) is the 
position variables and t is the time variable. The same would happen to the vehicles 
cursing in racing tracks.
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● Definition of Vector Functions in Vector Calculus

● We let A(u) = a Vector function, with u = variables that determine the value of the vector A. The 
rate of change of the vector function (or DERIVATIVES) can be expressed the same way as 
other CONTINUOUS function to be:

● Being a vector, A(u) may be expressed as: A(u) = A x(u) + A y(u) + A z(u) or with unit vectors in 
rectangular coordinate systems In general: 

A(u) = A x(u) i + Ay(u) j + A z(u) k
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● Where Ax, Ay and Az denote the components of vector A(u) along the x-, y- and z-
coordinate respectively, whereas Ax, Ay and Az are the magnitudes of the 
components of vector A(u) along the same coordinates respectively.

● The rate of change of the vector function (or DERIVATIVES) can be expressed the 
same way as other CONTINUOUS function to be: 



  

Vector calculus in Engineering

● Example:

● If a position vector r in a rectangular coordinate system has both its magnitude and 
direction varying with time t, and its two components rx and ry vary with time 
according to functions: rx = 1 – t2 and ry = 1+2t respectively.

● Determine the rate of variation of the position vector with respect to time variable t.

● Solution:

● We may express the position vector r in the following form:

● r(t) = rx(t) + ry (t) = rx(t) i + ry (t) j

● in which i and j are the unit vectors along the x- and y-coordinate respectively.

● The rate of change of the position vector r(t) with respect to variable t may be 
obtained as....
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● Derivatives of the products of vectors:
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● Example: 

Determine dA if vector function A(x,y,z) = (x² siny) i + (z² cosy) j – (xy²) k. 

● Solution:



  

Exam Revision Techniques

● Take some time to understand your learning style

● When it comes to finding the best revision techniques for students, it all 
begins with understanding how you learn best, e.g. what your learning style 
is. There are lots of different learning styles out there, with many turning to 
the VARK theory to understand their preferred learning style. In essence, the 
VARK theory identifies us as being one of the following learners: visual, 
aural, read (or write), or kinaesthetic – take the test below to find out which 
type of student you are!

● Once you know the method of learning that suits you best, simply tailor each 
of your revision sessions by choosing the techniques that will make 
remembering the information much easier for you. You’ll find that your 
revision becomes far easier, engaging, and effective on the whole.

● https://vark-learn.com/the-vark-questionnaire/
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● Use mind maps to connect ideas

● When it comes to your revision, do you find yourself struggling with 
remembering lots of new information? Or understanding how different topics 
relate to each other? Well, mind maps may be key to helping you succeed!

● In essence, the theory behind using mind maps is that making associations 
between related ideas can help us to memorise information quicker and 
faster – making it a very effective revision technique. 

● Mind maps begin with one central theme or topic. From here, you can then 
create branches from this central idea with other related ideas that you want 
to develop or visualise. From these branches, you can add further detail and 
information, with keywords helping you to summarise information, include 
key terminology, and visually connect ideas between one another.

● Having a topic summarised into a mind map on one big sheet of A3 paper 
can be hugely beneficial to information retention, especially if you also use 
visual aids to help summarise processes or definitions. 
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● Complete as many past papers as possible!

● Another highly effective revision technique to help you prepare for your 
exams is to get familiar with past papers. After all, there’s no point learning 
all that content if you don’t know how to apply it to the exams. 

● Past papers can be great at helping you become familiar with the format of 
exams, including the different types of question styles and time restraints. 
Then, when it comes to the real thing, you’ll know exactly what to expect.

● But aside from this, completing past pacers can also be a good way to test 
your current understanding of a subject and identify any gaps of knowledge 
or areas that you’re struggling with. 
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● Lastly, mix your study habits up to keep it engaging 

● For some ideas on how to keep your revision engaging, try using one or 
some of the following techniques:

● Watch video demonstrations or documentaries 

● Listen to podcasts

● Organise a group study session 

● Mix your study time between at-home and at a library or local café

● Write about your topic as if you were telling a story

● Try teaching a topic to a friend or family member who has little to no 
knowledge of it

● And finally, do some revision with other members of the class!



  

Important notice!
重要通知！

When I taught the previous Engineering course in May, the results were delayed. When you take the 
exam, please ensure that you clearly mark your English name, Chinese name and student number 
on the exam paper.

This will expedite marking (and hence results!) for all.

Many thanks.

当我在五月份教授之前的工程课程时，结果延迟了。 参加考试时，请确保在试卷上清楚地标明自己的
英文姓名、中文姓名和学号。

这将加快所有人的标记（以及结果！）。

非常感谢。



  

New information

● Any new announcements which I become aware of during the progress of the course 
will be published here.
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